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ABSTRACT

A particle filter algorithm is developed for the problem of online
subsample time-delay estimation between noisy signals received at
two spatially separated sensors. The delay is modeled as an adaptive
FIR filter whose coefficients are determined by the tracker’s parti-
cles, and updated on a sample-by-sample basis. Efficient tracking
of the delay parameter over time is ensured with the derivation of a
global system model integrating the target dynamics for both near-
field and far-field operation. Experimental simulations are carried
out to assess the algorithm’s convergence and tracking performance,
and demonstrate that the proposed method is able to efficiently track
time delays with stationary signals as well as speech.

1. INTRODUCTION

The problem of estimating the time delay between signals received
at two spatially separated sensors has been given substantial atten-
tion over the last few decades [1–4]. Time delay estimation repre-
sents a crucial process in several domains such as surveillance and
defence systems, wireless communication networks, geophysics and
biomedical engineering [4]. In order to provide robust time delay es-
timates (TDEs) for a variety of applications, several approaches have
been proposed in the literature. Some of these methods, such as the
well-known generalized cross-correlation (GCC) approach [5], de-
rive time delay estimates on the basis of the current frame of signal
data only, without accounting for previously computed TDEs. A sec-
ond class of time delay estimators includes adaptive algorithms that
perform some sort of tracking of the parameter of interest, such as
the LMS (least mean square) method [2, 6]. The main advantage of
using an adaptive technique is the ability to deal with time-varying
time delays resulting from relative target–sensor motions.

By taking into account the temporal information available from
previous estimation updates, Bayesian filtering provides an attrac-
tive framework for the generic problem of parameter estimation and
tracking [7]. Among the different methods using this state-space ap-
proach, the concept of particle filtering (PF) appears as a promising
technique able to deal with nonlinear and/or non-Gaussian problems,
and has received considerable attention in the last few years [8–10].

The work presented in this paper describes the implementation
of a PF-based algorithm for the problem of estimating and track-
ing time delays. Although the developed method can be applied to a
wide range of TDE applications, the derivations will be based on the
example of determining the time delay of arrival of a source signal
in the context of speaker localization. The next section provides a
brief overview of the various concepts involved in this specific type
of application. Section 3 briefly reviews the Bayesian approach and
particle filtering principles, and the proposed PF framework for time
delay estimation is then developed in Section 4. The last part of this
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Fig. 1. General setup definition for the TDE problem.

paper presents some experimental results obtained from the simula-
tion of the proposed algorithm, and the paper finally concludes with
a discussion of these results and a summary of future developments.

2. TIME DELAY ESTIMATION

The time delay estimation problem can be formulated as follows, see
Figure 1. A source (target) is located at the position pS = [xS yS]

T

and emits the unknown signal s(t). Two sensors, located at p
i

=
[xi yi]

T, i = 1, 2, provide the signals s1(t) and s2(t), which are
commonly modeled as:

s1(t) = s(t) + η1(t) , (1a)

s2(t) = α · s(t − τ) + η2(t) , (1b)

where τ ∈ R is the time difference of arrival (TDOA) of the source
signal with respect to each sensor, and α > 0 represents the differ-
ence in signal amplitude observed at the sensors. The diffuse noise
variables η1(·) and η2(·) are assumed to be independent zero-mean
Gaussian processes, and uncorrelated with the source signal. The
aim is to provide an estimate τ̂ of the (potentially time-varying) time
delay on the basis of the noisy measurements s1(·) and s2(·).

3. STATE-SPACE APPROACH

3.1. Bayesian Filtering

Consider the following discrete-time estimation problem, where k =
1, 2, . . . , represents the time index. Let the variable Xk represent
the state of the system under consideration at time k. At each time
step, assume that a (noisy) observation of the state becomes avail-
able, and denote this measurement variable as Yk. Using a Bayesian
filtering approach and assuming Markovian dynamics, this system
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can be globally represented by means of the following two state-
space equations [7]:

Xk = g(Xk−1, uk) , (2a)

Yk = h(Xk, vk) , (2b)

where g(·) and h(·) are possibly nonlinear functions, and uk and
vk are possibly non-Gaussian noise variables. Ultimately, one would
like to compute the so-called posterior probability density function
(PDF) p(Xk|Y1:k), where Y1:k = {Y1, . . . , Yk} represents the con-
catenation of all measurements up to time k. The density p(Xk|Y1:k)
contains all the statistical information available regarding the current
condition of the state variable Xk, and an estimate X̂k of the state
then follows, for instance, as the mean or the mode of this PDF.

The solution to this Bayesian filtering problem consists in the
following two steps of prediction and update [9]. Assuming that the
posterior density p(Xk−1|Y1:k−1) is known at time k − 1, the pos-
terior PDF p(Xk|Y1:k) for the current time step k can be computed
using the following recursion equations:

p(Xk|Y1:k−1) =

∫
p(Xk|Xk−1) p(Xk−1|Y1:k−1) dXk−1 ,

p(Xk|Y1:k) ∝ p(Yk|Xk) p(Xk|Y1:k−1) ,

where p(Xk|Xk−1) is the transition density, and p(Yk|Xk) is the
so-called likelihood function.

3.2. Sequential Monte Carlo Method

Particle filtering is an approximation technique that solves the Bayes-
ian filtering problem by representing the posterior density as a set
of N samples of the state space X

(n)
k

(particles) with associated

weights w
(n)
k

, n ∈ {1, . . . , N} (see e.g. [8]). Originally proposed in
[9], the so-called bootstrap algorithm is an attractive PF variant due
to its simplicity of implementation and low computational demands.
Assuming that the set of particles and weights {(X(n)

k−1, w
(n)
k−1)}

N

n=1

is a discrete representation of the posterior density at time k− 1, the
bootstrap PF update can be described as follows, for k = 1, 2, . . .:

1. Prediction: propagate the particles through the transition equa-

tion, X̃
(n)
k = g(X

(n)
k−1, uk).

2. Update: assign each particle a likelihood weight as given by

w̃
(n)
k

= w
(n)
k−1 · p(Yk|X̃

(n)
k ), then normalize the weights:

w
(n)
k

= w̃
(n)
k

·
( ∑N

i=1
w̃

(i)
k

)
−1

. (3)

3. Resampling: compute the effective sample size,

Neff =
( ∑N

n=1

(
w

(n)
k

)2
)
−1

.

If Neff is above some pre-defined threshold Nt, simply define

X
(n)
k

= X̃
(n)
k , ∀n. Otherwise, draw N new samples X

(n)
k

, n ∈

{1, . . . , N}, from the existing set of particles {X̃
(i)
k }N

i=1 ac-
cording to their weights w

(i)
k

, then reset the weights to uniform

values: w
(n)
k

= N−1, ∀n.

As a result, the set of particles and weights {(X(n)
k

, w
(n)
k

)}N

n=1 is ap-
proximately distributed as the current posterior density p(Xk|Y1:k).
The sample set approximation of the true posterior PDF can then be
obtained using:

p(Xk|Y1:k) ≈
∑N

n=1
w

(n)
k

δ(Xk − X
(n)
k

) ,

where δ(·) is the Dirac delta function, and an estimate X̂k of the
target state for the current time step k follows as:

X̂k =

∫
Xk · p(Xk|Y1:k) dXk ≈

∑N

n=1
w

(n)
k

X
(n)
k

. (4)

It can be shown that the variance of the weights w
(n)
k

can only in-
crease over time, which decreases the overall accuracy of the algo-
rithm. This constitutes the so-called degeneracy problem, known to
affect any PF implementation. The conditional resampling step in the
algorithm given above is introduced as way to mitigate these effects.
This resampling process can be easily implemented using a scheme
based on a cumulative weight function, see e.g. [8].

4. PARTICLE FILTER FOR TDOA TRACKING

4.1. Algorithm Development

For time delay estimation, the state parameter Xk is defined as the
variable of interest in (1), i.e. Xk � τk, where τk ∈ R is expressed
as a multiple of the sampling period. The PF approach to TDE pre-
sented here relies on a representation of the TDOA τ as a finite im-
pulse response (FIR) filter with 2P + 1 coefficients hi, which is
used to process one of the microphone signals [6]. Assuming that
the signal data is collected in a series of overlapping frames of length
2P + 1, the following vector notation can be introduced for the sig-
nals and filter coefficients:

h(k) =
[
h
−P (k) · · · h0(k) · · · hP (k)

]T
, (5)

si(k) =
[
si(k − 2P ) · · · si(k − P ) · · · si(k)

]T
,

for i = 1, 2. Ideally, the FIR coefficients are samples of a sinc(·)
function that represents a (truncated) fractional delay filter [11], im-
plicitly compensating for the TDOA in the sensor signals. Thus, the
filter weights in (5) are here constrained as follows:

hi(k) = sinc(i − τk), i ∈ {−P, . . . , P} . (6)

The PF algorithm presented in Section 3.2 requires the definition
of two important concepts, the likelihood function p(Yk|Xk) and the
transition density p(Xk|Xk−1), which are derived in the following.

1) Likelihood Function. Assuming α ≈ 1, the combined sig-
nal observation Yk for time delay estimation is formed as the error
e(k) = s2(k) − s1(k − τk), which can be expressed in vector form
as follows: Yk � s2(k − P ) − h(k)T

s1(k).1 Minimization of this
error function can be ensured by assuming that e(k) has a distri-
bution concentrated around zero with a small variance σ2

Y . Using a
Gaussian error PDF leads to the following likelihood function:

p(Yk|Xk) = N
(
s2(k − P );h(k)T

s1(k), σ2
Y

)
, (7)

where N (· ; µ, σ2) is the density of a Gaussian variable with mean
µ and variance σ2. Note that despite the Gaussian error assumption
in (7), the likelihood function p(Yk|Xk) itself cannot be approxi-
mated with a normal distribution in practice, due to the effects of
the received signals s1(·) and s2(·). The top graph in Figure 2 de-
picts a typical example of likelihood function computed for a source
emitting speech, demonstrating the non-Gaussian and multi-modal
character of this function.

1Note that the output of the particle filter has to be delayed by P samples
in order to maintain causality. The number of FIR coefficients should hence
remain as small as possible in a practical implementation.
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Fig. 2. Examples of PF-related PDFs. Top plot: likelihood func-
tion (dashed line: source’s TDOA). Bottom plot: transition density
(dashed line: Gaussian PDF with identical mean and variance).

2) Transition Density. The purpose of the transition equation
(2a) is to provide a model of the specific dynamics of the state vari-
able Xk over time. The development of the transition PDF for pa-
rameter τk will make use of a random walk process to model the
dynamics of the target in Cartesian coordinates:[

xk

yk

]
= I ·

[
xk−1

yk−1

]
+ uk , (8)

where uk ∼ N ([0 0]T, σ2
XI), I is the 2 × 2 identity matrix, and

σX = v̄f−1
S , with fS the sampling frequency and v̄ the maximum

steady-state velocity of the considered target.
Based on the problem setup and definitions given in Figure 1,

the TDOA can be computed as (plane wave assumption):

τk =
fSd

c
·

xk√
x2

k
+ y2

k

, (9)

with c the propagation speed of acoustic waves. A first-order Taylor
expansion of (9) about the point [xk−1 yk−1]

T can be shown to yield
the following approximation formula:

τk ≈ τk−1 +
fSd y2

k−1

c r3
k−1

(xk −xk−1)−
fSd xk−1yk−1

c r3
k−1

(yk − yk−1) ,

with the range parameter defined as: rk =
√

x2
k

+ y2
k

. Incorporat-
ing the random walk model definitions of (8) into the previous result
leads to the conditional PDF:

p(τk|τk−1, rk−1) = N (τk−1, σ
2
τ ) , (10a)

στ =
σX

rk−1

√
f2

S d2

c2
− τ2

k−1 . (10b)

The independence assumption of (8) between the xk and yk motions
results in τk and rk also being independent. This, together with (10),
finally leads to the transition density for τk being given as:

p(τk|τk−1) =

∫
p(τk|τk−1, rk−1) p(rk−1) drk−1 . (11)

Assuming a uniform distribution of rk between 0 and a maximum
range R, rk ∼ U(0, R), the bottom plot of Figure 2 depicts an
example PDF p(τk|τk−1 = 0) computed as in (11) with σX =
0.25 m, d = 0.3 m and R = 5 m. For comparison, this plot also
shows a Gaussian PDF with mean and variance identical to those

Assumption: at time k − 1, the set of particles X
(n)
k−1 = τ

(n)
k−1

and weights w
(n)
k−1, n ∈ {1, . . . , N}, is a discrete representa-

tion of the posterior p(Xk−1|Y1:k−1).

Iteration: for each new data sample from the sensors, k =
1, 2, . . . , update the particle set as follows:

1. Prediction: for each particle, randomly choose a value
rk−1 ∼ U(0, R), then propagate the particles by sampling

from a normal distribution X̃
(n)
k ∼ N (X

(n)
k−1, σ

2
τ ), where στ

is computed according to (10b).

2. Update: compute the unnormalized weights as given by

w̃
(n)
k

= w
(n)
k−1 · p(Yk|X̃

(n)
k ) using the likelihood defined in

(7), then normalize the weights according to (3).

3. Resampling: if necessary, resample the particles X̃
(n)
k , n ∈

{1, . . . , N}, to form the new set of particles and weights
{(X(n)

k
, w

(n)
k

)}N

n=1, as described in Step 3 of Section 3.2.

Result: the set {(X(n)
k

, w
(n)
k

)}N

n=1 is approximately distributed
as the posterior density p(Xk|Y1:k), and the current time delay
can be estimated according to (4).

Alg. 1. PF-TDE, PF algorithm for time delay estimation.

of p(τk|τk−1). The comparatively thinner mode and heavier tails of
p(τk|τk−1) account for the different dynamics resulting for τk de-
pending on whether the target is located in the near-field or far-field.

The prediction step of the PF algorithm presented in Section 3.2
implicitly requires sample values of τk to be generated with distri-
bution given by (11). The main issue with generating τk from an ex-
isting τk−1 value is related to the fact that a specific TDOA does not
provide information about the associated range rk−1. This problem
is solved here by first generating random values of rk−1 according
to p(rk−1), and subsequently drawing a sample τk from a normal
PDF with mean and variance defined by (10).

4.2. Proposed Algorithm

Based on the previous developments, the resulting PF algorithm for
time delay estimation, denoted PF-TDE, is summarized in Algo-
rithm 1. In order to allow the algorithm to adapt in cases where the
sensor signals have a time-varying strength (due to a non-stationary
source signal or a moving target), the data vectors si(k), i = 1, 2,

are first normalized as follows:

si(k) = 2(σs1
+ σs2

)−1 ·
[
si(k − 2P ) · · · si(k)

]T
,

with σsi
the standard deviation of the signal values si(k − j), j ∈

{0, . . . , 2P}. This procedure allows the definition of a constant σY

parameter in the implementation, regardless of the statistics and dy-
namic range of the input signals. It also enables the tracking algo-
rithm to automatically account for potential changes in the input
signal-to-noise ratio (SNR) during adaptation.

4.3. Discussion

The developments presented in this section highlight the non-Gaus-
sian character of the TDE problem. Tracking algorithms such as the
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Fig. 3. Absolute time-delay estimation error with white noise signal
(results averaged over 100 independent simulation runs).

Kalman filter and its derivatives would hence lead to sub-optimal re-
sults, whereas sequential Monte Carlo methods are able to integrate
this information in the development of the resulting algorithm.

In comparison to TDE methods such as the GCC function, the
proposed tracker has the advantage of eliminating the search for a
function maximum over a set of potential time delays. Constraining
the FIR coefficients as in (6) also bypasses the need for interpolation
of the filter weights, required in traditional LMS implementations
to yield subsample time delays. Finally, the PF approach involves a
model of the TDE “dynamics”, effectively limiting the variations of
the tracked parameter to a practically relevant range.

5. SIMULATION RESULTS

This section presents an overview of the tracking results obtained for
the PF-TDE method. The various algorithm parameters have been
optimized manually to maximize the tracking performance, while
ensuring that the algorithm is able to track time-varying time de-
lays for a variety of target trajectories and velocities. The PF-TDE
method was implemented with P = 25, N = 50 particles, and a
resampling threshold Nt = 32.5. For the model parameters, v̄ =
1 m/s, R = 3 m, and σY = 0.1. Also, in order to avoid singularities
during the computations, a small lower limit was used when gener-
ating random range values in the prediction step: rk−1 ∼ U(0.1, 3).

Figures 3 and 4 show the performance results obtained with a
stationary source with position pS = [1.8 m 3.5 m]T, and emitting
white noise sampled at fS = 16 kHz. The two sensor locations were
defined as p1 = [1.35 m 1 m]T and p2 = [1.65 m 1 m]T. The signals
si(k), i = 1, 2, were generated by convolving the source data with
fractional-delay filters corresponding to the time of arrival from the
target to each sensor, and corrupted with additive white Gaussian
noise to yield a desired SNR level.

Figure 3 gives an overview of the convergence and tracking re-
sults for several SNR values. To this purpose, PF-TDE was initial-
ized half a sample off the true source’s TDOA, i.e. X

(n)
0 = τS +

0.5, ∀n. Figure 4 shows a typical result of the proposed algorithm’s
tracking performance when speech is used as non-stationary source
signal. The sensor data was generated according to the procedure
described above with 15 dB SNR.

6. CONCLUSION AND FUTURE WORK

In this paper, a particle filtering method was proposed for the prob-
lem of estimating the TDOA of a source signal received at two spa-
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Fig. 4. Simulation results with speech signal. Top plot: sensor signal
s1(k). Bottom plot: absolute τk error (averaged over 100 runs).

tially separated sensors, working on a sample-by-sample basis. Sim-
ulation results show that the proposed algorithm is able to success-
fully track the time-delay parameter with an estimation error of less
than 0.1 sample for a range of SNR values, and for stationary signals
as well as speech. Future developments of the proposed PF algorithm
will include: i) attempt to improve the proposed method by making
use of additional sensors and including the attenuation parameter α

in the state vector; and ii) performing a comparative assessment of
the tracking accuracy in reverberant conditions and with moving tar-
gets, with respect to other existing TDE methods.
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