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ABSTRACT

The resolution improvements of time reversal methods through ex-

ploiting nonhomogeneous media have attracted much interest re-

cently with broad applications, including the destruction of kidney

stones, underwater acoustics, radar, detection of defects in metals,

communications, and mine detection. In this paper, we analyze the

effect of inhomogeneity generated by multiple scattering among

point scatterers under a multistatic sensing setup. We derive the

Cramér-Rao bounds (CRBs) on parameters of the scatterers and

compare the CRBs for multiple scattering using the Foldy-Lax

model with the reference case without multiple scattering using

the Born approximation. We find that multiple scattering could

significantly improve the estimation performance of the system.

For the case where multiple scattering is not possible, e.g., where

only a single target scatterer exists in the illuminated scenario, we

propose the use of artificial scatterers, which could effectively im-

prove the estimation performance of the target despite a decrease

in the degrees of freedom of the estimation problem due to the in-

troduced unknown parameters of the artificial scatterers. Numeri-

cal examples demonstrate the advantage of the artificial scatterer.

1. INTRODUCTION

The time reversal approach and its super resolution [1] have at-

tracted increasing interest recently with broad applications, includ-

ing the destruction of kidney stones, underwater acoustics, radar,

detection of defects in metals, communications, and mine detec-

tion. The idea behind so-called physical time reversal is to record

a signal emitted by sources or reflected by targets using an array of

transducers and then transmit the time-reversed and complex con-

jugated version of the measurements back into the medium. In a

reciprocal medium, the back-propagated wave will then retrace the

original trajectory and focus around the original source locations.

Experimental and theoretical evidence shows [2], [3] that the refo-

cusing in a non-homogeneous or random medium is much tighter

than in homogeneous, which is referred to as the super-resolution
of the time reversal. This super-resolution is intuitively interpreted

as taking advantage of the inhomogeneity to distribute the wave

over a larger part of the medium and therefore carry more infor-

mation about the source, and it is quantitatively measured as the

improved effective aperture [4], which corresponds to the equiv-

alent aperture that produces the same refocusing resolution in a

reference homogeneous medium.
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Encouraged by results in the situation of inhomogeneity, we

investigate possible advantages of multiple scattering in point scat-

tering estimation, in which the inhomogeneity is induced by inter-

actions of the scatterers. Multiple scattering exists in many physi-

cal systems involving wave propagation, including electrons, ultra-

sound, electromagnetic, and seismic waves, and can be analyzed

using very much the same concepts [5]. Though modeling and un-

derstanding of multiple scattering has been of interest in various

domains ranging from solid-state physics to optics to seismology

[6], it is still widely ignored in the signal processing literature, to

the best of the authors’ knowledge. Recently, MUSIC and max-

imum likelihood (ML) algorithms for estimating the locations of

point scatterers with multiple scattering were proposed in [7]-[10].

Cramér-Rao Bounds (CRBs) are computed in [11] to evaluate the

performance of reflectivity estimation in an unknown environment

using physical time reversal. In this paper, we continue our work

in [9], [10] by evaluating the effect of multiple scattering on the

performance of point scatter estimation. We will evaluate multiple

scattering under an active multistatic sensing setup without phys-

ical time reversal, and measure the performance in terms of the

well-known performance benchmark CRB.

This paper is organized as follows: In Section 2, we present

two physical models used in later comparisons: one takes into ac-

count the multiple scattering among the scatterers using the Foldy-

Lax model [12], and the other ignores it by using the Born approx-

imation [12], [13]. In Section 3, we compute the CRBs based on

these two physical models, and then present numerical evaluations

of the CRBs under randomized setups in Section 4. In Section

5, we propose the use of artificial scatterers to improve the sys-

tem performance and present conclusions in Section 6. Due to the

space limitation, interested readers are referred to the journal ver-

sion of this paper [14] for more detailed discussions and proofs of

the results.

2. PHYSICAL AND MEASUREMENT MODELS

We consider a transmit antenna array of Nt isotropic point anten-

nas centered at known positions α1, α2, . . . , αNt , and a receive

array of Nr elements at β1, β2, . . . , βNr
. The so-called Nr × Nt

multistatic response matrix [15], [16] K = [Kj,k(ω)], represented

in the frequency domain is a function of the frequency ω whose

element Kj,k(ω) coincides with the received signal at the j-th

receive antenna due to an impulse excitation applied by the k-th

transmit antenna, where j = 1, 2, . . . , Nr and k = 1, 2, . . . , Nt.

We assume the scenario under probe is stationary during the period

of sensing and there is no direct link from any transmit antenna to
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the receive antennas, i.e., the measured fields at the receive array

are due solely to the scattering of the illuminated scenario. Since

the information about the scenario is fully embedded in the mul-

tistatic matrix, the inference on the probed scenario will be based

on the measured multistatic matrix directly. We consider the sce-

nario that consists of M discrete point scatterers in a background

medium with known Green function G(r, r′, ω). The unknown

locations and scattering potentials of the scatterers are denoted

by x1, x2, . . . , xM and τ1(ω), τ2(ω), . . . , τM (ω), respectively.

The time harmonic Green function G(r, r′, ω) of the background,

which represents the “propagator” at ω from location r′ to r, sat-

isfies the reduced wave equation [15]. In the rest of this paper,

we will drop the dependence on ω in all notations for the sake of

simplicity.

Adopting the Foldy-Lax multiple scattering equations [12], we

formulate the multistatic matrix in a closed matrix form [9], [10]

KFL(x, τ ) = Ar(x)[T−1(τ ) − S(x)]−1AT
t (x), (1)

where “T ” stands for a matrix transpose, x = [xT
1 , xT

2 , . . . , xT
M ]T

∈ R
3M representing the unknown location parameters, τ = [τ1, τ2,

. . . , τM ]T ∈ C
M unknown scattering parameters, and T (τ ) =

diag{τ}. The matrix S(x) is defined as S(x) =

�
������

0 G(x1, x2) · · · G(x1, xM )
G(x2, x1) 0 · · · G(x2, xM )

...
. . .

...

G(xM−1, x1) · · · 0 G(xM−1, xM )
G(xM , x1) · · · G(xM , xM−1) 0

�
������

,

and Ar(x) = [gr(x1), gr(x2) · · · gr(xM )], At(x) = [gt(x1),
gt(x2) · · · gt(xM )]; the receive Green function vector gr(x

′) ∈
C

Nr as a function of arbitrary location x′ ∈ R
3 is gr(x

′) =
[G(β1, x

′), G(β2, x
′), . . . , G(βNr

, x′)]T and the transmit Green

function vector gt(x
′) ∈ C

Nt is gt(x
′) = [G(x′, α1), G(x′, α2),

. . . , G(x′, αNt)]
T . Note that the closed-form matrix representa-

tion (1) is a function of the background Green function only.

Using the identity (I − A)−1 = I + A + A2 + · · · , the

multistatic matrix (1) can be expanded into the power series as

KFL(x, τ ) = Ar(x)T (τ )AT
t (x) + Ar(x)T (τ )S(x)T (τ )AT

t (x)

+Ar(x)T (τ )S(x)T (τ )S(x)T (τ )AT
t (x) + · · · . (2)

This series form is actually a generalization of the Neumann se-

ries or Born series [12], [13] under the multistatic context, and its

convergence is guaranteed when the spectral radius of T (τ )S(x)
is less than one. The leading term of (2), known as the Born ap-

proximation, represents the first-order scattering, i.e., the scatter-

ing without taking into account the multiple scattering. The second

term represents the second-order scattering contribution, namely

the portion of the scattering that is reflected by the scatterers ex-

actly twice. The rest of the series are higher order scattering terms.

We will employ the Born-approximated model

KB(x, τ ) = Ar(x)T (τ )AT
t (x) (3)

as the reference model for studying the effect of multiple scattering

on the estimation performance. It is easy to see that the model (3)

is a special case of (1) when the S(x) matrix is set to be zero

matrix.

Before computing the CRBs, we further assume that Y , the

measured the multistatic matrix, deviates from the model K(x, τ )

by additive independent, identically distributed (i.i.d.) complex

circularly symmetric Gaussian noise, i.e.,

Y = K(x, τ ) + W, (4)

where W is Nr × Nt noise matrix whose elements vec(W ) ∼
CN (0, σ2INrNt) and vec(·) stacks the first to the last columns of

the matrix one under another to form a long vector. It worth men-

tioning that though it is technically feasible to derive the CRBs

under a more general correlated noise model, the simple noise as-

sumption is for gaining insight into the differences between the

two scattering processes with and without multiple scattering, re-

spectively.

3. CRAMÉR-RAO BOUND RESULTS

We start deriving the CRBs [17] from the expression for the Fisher

information matrix (FIM) in [18]. Reparameterizing the unknown

scattering parameters τ into real parameters τ̃ = [Re{τ1}, Im{τ1},
. . . , Re{τM}, Im{τM}]T ∈ R

2M , where Re{·} and Im{·} de-

note the real and imaginary parts of a complex number, respec-

tively. Define θ = [τ̃ T , xT ]T , and the FIM for θ is found as

I(θ) =
2

σ2
Re

��∂vec
�
K(x, τ )

	
∂θT


H�∂vec
�
K(x, τ )

	
∂θT


�

=
2

σ2
Re

�
DH(θ)D(θ)



, (5)

where “H” represents the conjugate transpose. The Jacobian ma-

trix D(θ) = ∂vec
�
K(x, τ )

	
/∂θT could be partitioned as D(θ) =

[Dτ̃ , Dx], where Dτ̃ = ∂vec
�
K(x, τ )

	
/∂τ̃ T and Dx =

∂vec
�
K(x, τ )

	
/∂xT . Following the same partition, the FIM is

partitioned accordingly as

I(θ) =

�Iτ̃ τ̃ IT

xτ̃
Ixτ̃ Ixx

�
. (6)

The CRB matrix for location parameters x is

CRB(x; τ̃ ) = (Ixx − Ixτ̃I−1
τ̃ τ̃IT

xτ̃ )−1, (7)

and the CRB matrix for scattering parameter τ̃ is

CRB(τ̃ ; x) = (Iτ̃ τ̃ − IT

xτ̃I−1
xxIxτ̃ )−1. (8)

For the case with multiple scattering, the Jacobian matrices

D
FLτ̃ and DFLx are found as

D
FLτ̃ =

�
At(x)[IM − T (τ )S(x)]−1

�Ar(x)[IM − T (τ )S(x)]−1	⊗ (1, i), (9)

DFLx =
�
At(x)[T−1(τ ) − S(x)]−1 ⊗ 1T

n

	� Br(x)

−�At(x)[T−1(τ ) − S(x)]−1 ⊗ Ar(x)[T−1(τ ) − S(x)]−1	C(x)

+Bt(x) � �
Ar(x)[T−1(τ ) − S(x)]−1 ⊗ 1T

n

	
, (10)

where

• “�” stands for the Khatri-Rao product [19],

• “⊗” represents the Kronecker product [19],

• “i” is the imaginary unit,

• Bt(x) = [bt(x1), bt(x2) · · · bt(xM )],

• bt(xm) = ∂gt(xm)/∂xT
m, m = 1, 2, . . . , M ,
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• Br(x) = [br(x1), br(x2) · · · br(xM )],

• br(xm) = ∂gr(xm)/∂xT
m, m = 1, 2, . . . , M ,

• 1n: n-dimension column vector with each element as 1,

• n is the dimension of one location parameter xm,

• C(x) = [cT (x1), c
T (x2) · · · cT (xM )]T ,

• c(xm) = ∂g(xm)/∂xT , m = 1, 2, . . . , M ,

• g(xm) = [G(x1, xm), G(x2, xm), . . . , G(xM , xm)]T ,

in which G(xm, xm) � 0, m = 1, 2, . . . , M .

For the reference case with no multiple scattering, recalling

that multistatic model (3) is the special case of (1), we can find the

Jacobian matrices D
Bτ̃ and DBx by substituting S(x) as a zero

matrix into (9) and (10), which are

D
Bτ̃ = At(x) � Ar(x) ⊗ (1, i), (11)

DBx = [At(x)T (τ ) ⊗ 1T
n ] � Br(x)

+Bt(x) � [Ar(x)T (τ ) ⊗ 1T
n ]. (12)

4. NUMERICAL COMPARISONS

We employ a homogeneous two-dimensional setup, i.e., n = 2, the

inhomogeneity is then due solely to the multiple scattering among

the scatterers. Dropping the unessential constant, we obtain back-

ground Green function G(r, r′) = ei2π|r−r′|/λ /
�

2π|r − r′|/λ
under usual approximation [20]. Assume collocated transmit and

receive arrays are uniform linear arrays (ULAs) located between

(-20,0) and (20,0) with spacing of 5, i.e., Nt = Nr = 9. All the

coordinates are in the unit of wavelength, i.e., we assume the nar-

rowband signal with λ = 1. Detailed discussions on the spatial

ambiguity of this sparse setup could be found in [10], whereas we

use the 5λ antenna spacing here and [14] is solely for computa-

tional simplicity, it is easy to verify that all the results hold for

transmit and receive arrays with λ/2 spacing. Due to the space

limitation, more numerical examples are presented in the journal

version of this paper [14].

We computed the CRBs on the location and scattering para-

meters under randomized scatterer setup assuming that three scat-

terers (M = 3) are located randomly and uniformly over a rec-

tangular area centered at (0, 30) with dimension 50 × 40. Moduli

of the scattering potentials were assumed to be independently and

uniformly distributed over [0.5, 1], and the phases uniformly dis-

tributed over [0, 2π]. We ran 251 Monte Carlo runs and plot each

run as one point in Figure 1 with tr CRBB(x; τ̃ )/ tr CRBFL(x; τ̃ )
as its x coordinate and tr CRBB(τ̃ ; x)/ tr CRBFL(τ̃ ; x) as the y
coordinate, where “tr” represents the trace of a matrix. If we set

point (1, 1) as the coordinate origin, we can see in Figure 1 that all

the 251 Monte-Carlo runs are in the first quadrant, which means

that multiple scattering improves the CRBs in the randomized se-

tups. The median of tr CRBB(x; τ̃ )/ tr CRBFL(x; τ̃ ) is 7.1254,

and 8.6120 for tr CRBB(τ̃ ; x)/ tr CRBFL(τ̃ ; x). In addition, a

strong positive correlation between the two CRB ratios of x and τ
may be seen in Figure 1, which indicates that the estimation accu-

racy on the location parameters greatly affects that on the scatter-

ing parameters.

It worth mentioning that the favorable effect of multiple scat-

tering on the estimation performance depends on the system setup.

For example, if we increase the scattering potentials until the in-

teractions among the scatterers are large enough, the multiple scat-

tering actually turns out to deteriorate the estimation performance.

Fig. 1. tr CRBB(τ̃ ; x)/ tr CRBFL(τ̃ ; x) versus tr CRBB(x; τ̃ )
/ tr CRBFL(x; τ̃ ) in the 251 Monte-Carlo runs.

Identifying conditions under which multiple scattering is benefi-

cial in terms of improving the CRBs is an interesting challenge,

which we will consider in our future work.

5. ARTIFICIAL SCATTERERS

One straightforward way of exploiting the advantage of the multi-

ple scattering is simply to introduce it into the modeling. We fur-

ther propose the use of artificial scatterers [21] to create multiple

scattering. The artificial scatterers can either be active or passive:

active artificial scatterers could be relays that simply amplify and

retransmit the incident wave; passive artificial scatterers could be

scatterers that reflect efficiently. The artificial scatterers could be

deployed in the scenario of interest in a planned manner or hap-

pen to be nearby by opportunity. We use the following numerical

examples to demonstrate the efficacy of the artificial scatterers as-

suming the location and scattering potentials of the deployed arti-

ficial scatterers are unknown.

The array setup is the same as in Section 4 in which we con-

sider one target scatterer and two artificial scatterers. We compute

the traces of the CRBs on the target location x1 and scattering pa-

rameters τ1 for the case without artificial scatterers, denoted by

tr CRB1(x1; τ̃1) and tr CRB1(τ̃1; x1), respectively, where τ̃1 =
[Re{τ1}, Im{τ1}]T , then compute the traces of the CRBs of the

target scatterer after deploying two artificial scatterers, denoted by

tr CRB1+2(x1; τ̃1) and tr CRB1+2(τ̃1; x1). We plot 251 Monte-

Carlo runs with tr CRB1(x1; τ̃1)/ tr CRB1+2(x1; τ̃1) as x co-

ordinates and tr CRB1(τ̃1; x1)/ tr CRB1+2(τ̃1; x1) as y coordi-

nates.

In Figure 2 the computation is performed based on Born ap-

proximation model (3), as expected all the runs appear in the third

quadrant which means that the added artificial scatterers decrease

the estimation performance of the single scatterer in the case with-

out multiple scattering. This is the direct consequence of the in-

creased unknown parameters, thus reducing the degrees of free-

dom of the estimation problem. In Figure 3, the CRBs are com-

puted using the Foldy-Lax model (1). It is interesting to see that

most of the Monte-Carlo runs lie in the first quadrant in this case,

meaning that the two randomly deployed artificial scatterers im-

proved the estimation performance on the target scatterer via the
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created multiple scattering. The median of tr CRB1(x1; τ̃1)
/ tr CRB1+2(x1; τ̃1) is 6.6418, and 7.9206 for tr CRB1(τ̃1; x1)
/ tr CRB1+2(τ̃1; x1). The multiple scattering surprisingly not only

offsets the degradation of the CRBs on the target scatterers due the

lowered degrees of freedom, but also improves the estimation per-

formance further in most of the randomized scatterer setups.

Fig. 2. tr CRB1(τ̃1; x1)/ tr CRB1+2(τ̃1; x1) versus

tr CRB1(x1; τ̃1)/ tr CRB1+2(x1; τ̃1) in the absence of multiple

scattering.

Fig. 3. tr CRB1(τ̃1; x1)/ tr CRB1+2(τ̃1; x1) versus

tr CRB1(x1; τ̃1)/ tr CRB1+2(x1; τ̃1) in the presence of multiple

scattering.

6. CONCLUSIONS

We derived the Cramér-Rao bounds on the location and scatter-

ing parameters of point scatterers under a multistatic sensing setup

for the cases in which multiple scattering either exist or not. We

demonstrated that the inhomogeneity induced by the multiple scat-

tering could greatly improve the estimation performance in terms

of the CRBs. We then proposed the use of artificial scatterers in

the absence of natural multiple scattering. Analytically comparing

the CRBs in terms of their trace, determinant, or any matrix norm

is challenging due to the nonlinear dependence of the CRB matri-

ces on the system parameters. We will investigate this point in our

future work.
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