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ABSTRACT

In this paper we present a new source separation method based on
dynamic sparse source signal models. Source signals are modeled
in frequency domain as a product of a Bernoulli selection variable
with a deterministic but unknown spectral amplitude. The Bernoulli
variables are modeled in turn by first order Markov processes with
transition probabilities learned from a training database. We con-
sider a video conferencing scenario where the mixing parameters are
estimated by the video system. We obtain the MAP signal estima-
tors and show they are implemented by a Vitterbi decoding scheme.
We validate this approach by simulations using TIMIT database, and
compare the separation performance of this algorithm with our pre-
vious extended DUET method.

1. INTRODUCTION

Signal Separation is a well studied topic in signal processing. Many
studies were published during the past 10 years, each of them consid-
ering the separation problem from different points of view. Once can
use model complexity to classify these studies into four categories:

1. Simple models for both sources and mixing. Typical signals
are modeled as independent random variables, in their origi-
nal domain, or transformed domain (e.g. frequency domain).
The mixing model is either instantaneous, or anechoic. The
ICA problem [1], DUET algorithm ([2]), or [3] belong to this
category;

2. Complex source models, but simple mixing models. An ex-
ample of this type is separation of two speech signals from
one recording using one microphone. In this case, source sig-
nals are modeled using complex stochastic models , e.g. AR
processes in [4], HMMs in [5], or generalized exponentials in
[6];

3. Complex mixing models, but simple source models. This is
the case of standard convolutive ICA. For instance source sig-
nals are i.i.d. but the mixing operator is composed of un-
known transfer functions. Thus the problem turns into a blind
channel estimation as in e.g. [7, 8, 9];

4. Complex mixing and source models. For instance [10] uses
AR to model source signals, and FIR transfer functions for
mixing.

We chose the complexity criterion in order to point out the basic
trade-off of signal separation algorithms. A more complex mixing or
source model may yield a better performance provided it fits well the
data. However more complex models are less robust to mismatches
than a simpler model, and may perform unexpectedly worse on real

world data. In our prior experiments [11] we found that simple sig-
nal and mixing models yield surprisingly good results on real world
data. Robustness to model uncertainties explains these good results.

Indeed this is the case with DUET. The basic idea of the DUET
approach is the assumption that for any time-frequency point, only
one signal from the ensemble of source signals would use that time-
frequency point. In [12] we extended this assumption in a system
with � sensors to what we called generalized W-disjoint orthogo-
nality hypothesis by allowing up to � � � source signals to use si-
multaneously any time-frequency point. In both cases source signals
were assumed mutually independent across both time and frequency.
In other words, any two different time-frequency coefficients of the
same source are assumed independent.

However we would like to increase the power of source separa-
tion particularly when there exists prior knowledge about the sources
(see also [5, 6]). In this paper we propose an incremental increase in
source model complexity combined with simple mixing model that
conforms to our basic belief that models should not be more compli-
cated than what is really needed in order to solve the problem. For
this we we allow for statistical dependencies of source signals across
time.

More precisely [13] postulates a signal model that states that the
time-frequency coefficient � 	 �  � � of a (speech) signal � 	 � � factors
as a product of a continuous random variable, say � 	 �  � � , and a 0/1
Bernoulli � 	 �  � � :

� 	 �  � � � � 	 �  � � � 	 �  � � (1)

This formula models sparse signals. See also [14] for a similar signal
model. Denoting by " the probability of � to be 1, and by # 	 % � the
p.d.f. of � , the p.d.f. of � turns into

# ( 	 � � � " # 	 � � . 	 � � " � 1 	 � � (2)

with 1 , the Dirac distribution. For 2 independent signals � 4  6 6 6  � 7 ,
the joint p.d.f. is obtained by conditioning with respect to the Bernoulli
random variables. The rank � term, 8 : � : > , is associated to a
case when exactly � sources are active, and the rest are zero. In [12]
we showed that by truncating to the first N+1 terms the approximated
joint p.d.f. corresponds to the case when at most > sources are ac-
tive simultaneously, which constitutes the generalized W-disjoint hy-
pothesis. This paper extends the signal model (1) by assuming the
Bernoulli variables are generated by a Markov process, while the
complex amplitudes � 	 �  � � are modeled as unknown deterministic
variables.

The application we target is a video conferencing system (see
Figure 2) where a video camera is used to estimate the location of
the speakers. We assume an anechoic mixing model, where knowl-
edge of direction-of-arrivals (DOAs) implies knowledge of mixing
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parameters. Section 3 describes the statistical signal estimators. We
show that signal estimation is similar to a Viterbi decoding scheme.
Section 4 presents the method for learning the transition probabili-
ties of source models. Section 5 contains numerical results, and is
followed by the conclusion section.

2. SIGNAL AND MIXING MODELS

2.1. Anechoic Mixing Model

Consider the measurements of � source signals by an equispaced
linear array (uniform linear array) of � sensors, under the far-field
assumption where only the direct path is present. In this case, with-
out loss of generality, we can absorb the attenuation and delay pa-
rameters of the first mixture � � � � � , into the definition of the sources.
Furthermore, for the purpose of this paper we neglect the relative
attenuation between sensors. In time domain the mixing model is

	 �  � � � �� � � � �
�  � �  � � � � � � � ! # �  � � ' � * � * . (3)

where / � 1 2 2 2 1 / 5 are sensor noises, and 6
�

7 9 ; < = ? @ A � B
�

� C ? is the
relative delay of source E between adjacent sensors, with 9 ; distance
between sensors, < = sampling frequency, ? speed of sound, and B

�
the angle w.r.t. the array axis (see Figure 2).

We denote by F � � G 1 I � , K
�

� G 1 I � , M � � G 1 I � the short-time Fourier
transform of signals � � � � � 1 A

�
� � � , and / � � � � , respectively, with re-

spect to a window O � � � , where G is the frame index, and I the
frequency index. Then the mixing model (3) turns into

Q �  S ' T � � �� � � � V X
Y Z \ �

X � ] _ ` a �  S ' T � ! b �  S ' T � (4)

When no danger of confusion arises, we drop the arguments G 1 I inF � 1 K
�
and M � .

2.2. Signal Model

Consider a source signal A � � � , c d � d g , and its associated short-
time Fourier transform K � G 1 I � , c d G d m o ; p , q d I d u .
Each time-frequency coefficient K � G 1 I � is modeled by the productv � G 1 I � x � G 1 I � as in (1), where v is a Bernoulli (0/1) random vari-
able, and x is an unknown deterministic complex amplitude. In
previous work we assumed z v � G 1 I � } G 1 I � is a set of independent
random variables. In this paper we preserve independence along
the frequency index, but we introduce a Markov dependence along
the time index. The independence in frequency is supported by the
remark that local stationarity in time domain implies decorrelation
of frequency components. Along the time index, our assumption
amounts to:�

� v � G 1 I � � v � G � c 1 I � 1 v � G � � 1 I � 1 2 2 2 1 v � c 1 I � � 7�
� v � G 1 I � � v � G � c 1 I � � 7 � Z � v � G 1 I � 1 v � G � c 1 I � �

where z � Z � is the set of � � � matrices of probabilities of transition.
By successive conditioning we obtain that:

�  � �  S ' T � � S ' T � � � � Z �  �  � ' T � � � � � ��� � � � Z  �  S ' T � ' �  S � � ' T � �
(5)

For each source in the mixture we assume we have a database of
training signals where we learn the matrices of transition probabili-
ties and the set of initial probabilities (see Section 5).

For a collection of � source signals, we assume that only M
Bernoulli variables are nonzero; the rest are zero. We denote byz � v

�
� G 1 I � � � �

�
� � } G 1 I � the collection of Bernoulli random variables,

� � G 1 I � 7 z E } v
�

� G 1 I � 7 c � the M -set of nonzero components ofK � G 1 I � , � �
�

Z � � �
�

� � ¥ ¦ � Z � § the collection of transition probability
matrices, �

� �
Z � � �

�
� � ¥ ¦ � Z � § the collection of initial probabilities.

Then the joint pdf becomes:�  � � �  S ' T � � ¨ ' S ' T � � � � Z ª ¦Z  «  � ' T � � �� ¬ � ª Z  «  S ' T � ' «  S � � ' T � �
(6)

where

ª Z  «  S ' T � ' «  S � � ' T � � � �� � � � �
�

Z  � �  S ' T � ' � �  S � � ' T � �
ª ¦Z  «  � ' T � � � �� � � � � �

Z  � �  � ' T � � (7)

The collection of all subsets � � G 1 I � defines a trajectory through the
selection space K °� , the set of M -subsets of z c 1 � 1 2 2 2 1 � � . Thus for
each frequency I we associate ± Z 7 z � � G 1 I � } c d G d m o ; p �
the selection space trajectory. Source estimation is then equivalent to
estimating both the selection space trajectories � ± Z � Z and the com-
plex amplitudes z x

�
� G 1 I � } E ² � � G 1 I � � .

In this paper we assume that the mixing model is given by (4),
signals K

�
� G 1 I � satisfy the signal model above, and noise compo-

nents M � � G 1 I � are Gaussian i.i.d. with zero mean and spectral vari-
ance � �

.
Our problem is: Estimate the source signals � A � � � � , 2 2 2 , A � � � � � ,c d � d g , given measurements � � � � � � , 2 2 2 , � 5 � � � � � � ³ � ´ of the

system (4) and assuming the following:

1. The mixing parameters � 6
�

� � �
�

� � are known;

2. The noise z / � � � � is i.i.d Gaussian with zero mean and known
spectral power � �

;

3. The components of signal K are independent and satisfy the
stochastic model presented before, with known probabilities
of transition � �

�
Z �

�
¥ Z and initial probabilities

� �
Z ;

4. At every time-frequency point � G 1 I � at most M components
of K � G 1 I � are non-zero, and M is known.

3. MAP SIGNAL ESTIMATION

In this paper we estimate the signals � A
�

� � � �
�

¥ ³ by maximizing the
posterior distribution of the Bernoulli variables, and the likelihood
of the complex amplitudes. Alternatively, using a uniform prior
model on the amplitudes, our solution is a MAP estimator of both
the selection variables and the complex amplitudes. The criterion to
maximize is:µ � � Z �  � Q  S ' T � � � * S * · o ; p � ¸ � � �  S ' T � ' º  S ' T � �

¨ ' � * S * · o ; p � � �  � � �  S ' T � � ¨ ' � * S * · o ; p � � (8)

We replace the Bernoulli variables by the set-valued variables ± Z 7� � � G 1 I � � � ¥ Z , and we consider the reduced complex amplitude M -
vector » ¼ � G 1 I � corresponding to nonzero components of K (in turn
selected by � � G 1 I � ). We let ½ ¼ � G 1 I � denote the � � M mixing
matrix whose columns corresponds to the nonzero components ofK � G 1 I � : � ½ ¼ � G 1 I � � � ¥ o 7 À X

Y Z \ �
X � ] _ ` \ o ] , where E � Á � is the Á ³ Â

element of � � G 1 I � . The first term decouples into a product of like-
lihoods at each time G ; the second term is estimated in (6). Putting
these two expressions together, the criterion to maximize becomes
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(up to a multiplicative constant term):

� � � � � 	 �  � � � � � � � �� � � � �  " � 	 � � % � & �
' � � � � ) � , � � � � ) � � � , � � ' 1� � � � � � , � �

Given � � ) � , � , at every � ) � , � we can solve for � 	 � ) � , � and ob-
tain: � 	 � ) � , �  �  8 "  " � : ;  8 " �
Taking the logarithm, flipping the sign, ignoring some constants, and
replacing � 	 by the above estimate, we obtain the following opti-
mization problem

< > @ B � � D � 8 � � �  " �  8 "  " � : ;  8 " � � � � � E G H ' � � � � ) � , � �
� � ) � � � , � � K � � � E G H ' 1� � � � � � , � � (9)

Let us denote byN O P O R S U V V W X O R S U V 8 O Y Z \ " O R S U V O \ 8 " O R S U V \ " O R S U V V : ; \ 8 " O R S U V V X O R S U V
and

^ � � � ) � , � � � � ) � � � , � �  � � � E G H ' � � � ) � , � � � � ) � � � , � �
for ) b d . Then the optimization becomese f hB i j � & � N O P O R S U V V l m O P O R S U V S P O R Z Y S U V V l N O P O Y S U V Z r 1� O P O Y S U V V
at every frequency , . The solution represents a trajectory � � in

the selection space � s tu � v w x y . The optimization can be efficiently
implemented using a backward-forward best path propagation algo-
rithm (Viterbi) widely used in channel decoding problems. The al-
gorithm is as follows:
Algorithm

Step 1. (Initialization) Set )  | } ~ � , and � 8� � � �  � for all� � s tu .
Step 2. (Backward propagation) For all � � s tu � -subsets of� � � d � � � � � � % repeat� For all � � � s tu compute � � � � � � �  � 8� � � � � � � � � � � �^ � � � � � �� Find the minimum over � � , and set � 8�

: ; � � �  < > @ � � � � � � � � �
Step 3. Decrement )  ) � � , and if ) � � go Step 2.
Step 4. At )  � , replace � � � � � by � � � � � � � � E G H ' 1� � � � � � , � �

and perform Step 2. Denote � 8 � � � , �  � � � < > @ � � 8; � � � .
Step 5. (Forward iteration) Set )  d and repeat until ) | } ~ � :� For all � � s tu compute � � � �  � � � � � ^ � � � � 8 � ) � � � , � �� Find the minimum and set � 8 � ) � , �  � � � < > @ � � � � �� Increment )  ) � � .

4. MODEL TRAINING

For training we used a fixed sentence uttered by the corresponding
speaker. We assumed the recorded voice is made of two components:
one part which is critical to understanding, and a second component
which can be removed losslessly from an information point of view.
Thus �  � ¥ 	 ¦ § ¦ ¥ � � ¨ � § 	 ~ . Assuming the first component has a
Laplace (or even peackier) distribution in frequency domain whereas
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Fig. 1. Transition probabilitites of one signal for ©  � � �

the second component is Gaussian, the estimation of � ¥ 	 ¦ § ¦ ¥ is done
by (soft, or hard) thresholding of the measured signal. We chose a
threshold proportional to square root of signal spectral power. Thus,
in case of hard thresholding:

s ¥ 	 ¦ § ¦ ¥ ~
ª

� ) � , �  s � ) � , � > ¬  s � ) � , �  b © ® � � , �� ¯ ° ± � � ² > � �
The factor © is chosen so that the thresholded signal sounds almost
identical to the original signal � . Subjective experimentation showed
that a factor ©  � � � satisfies this requirement. Once � s ¥ 	 ¦ § ¦ ¥ ~

ª
� ) � , � ´) � , % has been obtained, we estimate the binary sequence � µ � ) � , � ´) � , % simply by setting µ � ) � , �  � for s ¥ 	 ¦ § ¦ ¥ ~

ª
� ) � , � ¶ � , and

0 otherwise. From the binary sequence � µ � ) � , � ´ ) � , % we estimate
the transition probability matrices · � and initial probabilitites

¸ � by
maximum likelihood estimators:

¹ � O º S º V W ¼ 1 1¼ 1 1 l ¼ 1 ; S ¹ � O Y S º V W Y Z ¹ � O º S º V
¹ � O Y S Y V W ¼ ; ;¼ ; 1 l ¼ ; ; S ¹ � O º S Y V W Y Z ¹ � O Y S Y V

¿ � O Y V W ¼ ;¼ 1 l ¼ ; S ¿ � O º V W Y Z ¿ � O Y V
where � 1 , � ; , � 1 1 , � 1 ; , � ; 1 , � ; ; are, respectively, the number
of 0’s, 1’s, 00’s, 01’s, 10’s, 11’s in the binary training sequence� µ � ) � , � � � . Figure 1 plots an example of the distributions · � � � � � �
and · � � � � � � .

5. EXPERIMENTAL EVALUATION

Consider the setup of a teleconferencing system as depicted in Figure
2: �  Á speakers placed around a conference table are recorded by
a video camera and an array of ^  � microphones. The video sys-
tem is able to estimate speaker directions of arrival, Ã ; � Ã � � Ã � . For
each speaker, the associated relative delay is then computed using©

ª
 � �

G � � Ã
ª

� , where �  Å ~ ¬ � Æ Ç is the maximum delay between
adjacent microphones. In our simulations, Å ~  
 cm and ¬ �  � �
KHz which makes �  d � Á samples. We used 2 female and 2 male
speakers from the TIMIT database at positions located at multiple of

� � degrees. Testing was done on wavefiles of around 10 seconds of
normal speech. We added Gaussian noise with �  � � � (note � is
an absolute value rather than relative to signals). We set �  d (the
number of simultaneous speakers), even though all �  Á speakers
were active most of the time. We estimated each source using the
MAP-based Estimation Algorithm presented in Section 4 for four
choices of priors: 1) use the initial distribution and transition prob-
abilities learned from the training database as presented before; 2)
use uniform initial distribution probabilities but the transition prob-
abilities learned from the training database; 3) use uniform transi-
tion probabilities, but initial probabilities learned from the training
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Fig. 2. Experimental Setup

MAP DUET
src iSNR
1 -7.9
2 -7.5
3 -3.3
4 -2.4

SINRg RDist Dist
11.2 -3.3 21.3
6.1 1.3 26.4
2.5 0.7 29.0
1.8 0.6 29.5

SINRg RDist Dist
8.4 -0.5 24.1
4.8 2.6 27.6
1.5 1.7 29.9
1.0 1.4 30.2

Table 1. SINR gains and Distortions for the two estimators

database; 4) use uniform distributions for both the initial distribution
and for the transition probabilities. This last combination of priors
turns our MAP algorithm into the extended DUET presented in [12].

We compared these algorithms with respect to three criteria:
SINR gain, relative distortion and distortion. The SINR gain for
component � is defined by:

� � � � �
� � � � � � � � � � � � � � 
 � 
 � �  � � � �  � �

� �
� � ��

� � �
� �

where � � � � is the energy of signal � , and �  � �
�

� ��
�
are respectively,

the microphone 1 measured signal, input signal � at microphone 1,
and the � � � estimated signal. The relative distortion is given by:

� ! � � " � � 
 � 
 � �  � � � �
� � ��

� �
� � �

� � � � � � � � �

which is equal to negative of the output SINR, whereas the (abso-
lute) distortion is computed by:! � � " � � 
 � 
 � �  � � � �

� � ��
� �

The larger the # $ % ' ) the better; the smaller the ' * , � / and * , � /
the better. We experimentally verified that the choice for initial dis-
tribution probabilities does not have almost any effect on the outputs.
Table 1 presents the results for the first and the last choice of priors.
Listening to the estimates we notice little distortion of the signals,
however the strong residual interference may mask whatever distor-
tion is still present. Overall the use of a prior distribution yields a
gain of about 5.4dB and improves by about 1.5dB the SINR gain
and distortion compared to the extended DUET algorithm. We re-
peated the experiment for multiple combination of voice signals, and
in every case we obtained results similar to Table 1.

6. CONCLUSIONS
In this paper we presented a novel signal separation algorithm that
extends our past DUET algorithm. The algorithms works for under-
determined cases, when there are fewer sensors than sources, and
in the presence of noise. The main assumptions are: (i) source sig-
nals have sparse time-frequency representations (although another
representation, such as time-scale, would work as well); (ii) each
frequency is independent from one another; (iii) the binary selection

variables obey a homogeneous Markov process model, with transi-
tion and initial probabilities learned from a training database. We
derived the MAP estimator of binary selection variables and ML of
the complex signal TF coefficients, and show it can be efficiently im-
plemented using a Viterbi decoding scheme. Next we validated our
solution in a 4-voice 3-microphone array video conferencing sce-
nario with known direction-of-arrivals. We obtained an improve-
ment of about 1.5 dB compared with the previous DUET algorithm,
and no noticeable distortions. The mixing parameters (delays, in our
case) were presumed known, being estimated by the video system.
One can write a maximum likelihood estimator of these parameters,
based on (8). A joint source signals and mixing parameters esti-
mation based on audio signal only would be less robust to model
uncertainties, or mismatches. Results of joint optimization will be
presented elsewhere.
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