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ABSTRACT

Detection of activity is a key capability for microphone arrays. An

array system should tell when a source of interest is present and

evaluate the usability of the computed spatial estimates. This work

proposes activity features that are computed from spatial data only,

using time delays and direction of arrival. The features are validated

with a loudspeaker experiment. Results show that the features are

effective: tolerable detection errors are achievable with simple de-

tection methods. In addition, direction of arrival estimation error is

reduced down to one third when unreliable estimates are discarded.

1. INTRODUCTION

When microphone array direction of arrival (DOA) estimates are uti-

lized, two questions arise. Firstly, is there a source of interest present

in the estimated data? Secondly, are the spatial estimates from this

source, and are they reliable? Answering these questions is vital in

many applications of microphone arrays, including surveillance sys-

tems [1]; traffic monitoring [2], [3]; and speech applications [4], [5].

The first question can be partially answered with conventional

methods that are based on signal models. These methods, such as

voice activity detectors, utilize the time and frequency domain prop-

erties of signals to detect periods of activity. This kind of detec-

tion is accurate when assumptions of the underlying signal model

are met. However, when received signals or background differ from

the model or training conditions, detection accuracy suffers. This

may corrupt further processing that relies on array information. For

example, speech detection errors have an unwanted effect on array

based speech enhancement [6]. If signals and background are vary-

ing, several models may be required to cover them satisfactorily. In

addition, the models usually need to be trained with data that rep-

resent the operating conditions comprehensively. For some appli-

cations, such as surveillance systems, this can be difficult or even

impossible.

Answering the second question is a much more complicated

task. Time/frequency model based detectors provide little or no in-

formation on the spatial estimate, because they are not designed for

this task. For example, a signal model based detector may label a

frame of data inactive in low SNR, although an array processor is

still able to perform spatial estimation. Or, in multipath conditions,

spatial estimates can be largely erroneous even though signal based

detection labels the data active.

An automatic system should be able to answer both of the pre-

sented questions by telling whether a source is present and is it
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known to be in the estimated direction. Achieving this goal requires

detection to be robust against changing conditions and against devi-

ations from the assumed signal model. Such a situation occurs, for

example, when the observed signals are from a type of source that

has not been encountered before.

One way to increase this kind of robustness is to use spatial fea-

tures in combination with the time and frequency domain informa-

tion [7], [8]. Temporal and spectral features are dependent on input

signals, thus their utilization requires a signal model or distributional

assumptions. This makes the methods prone to errors caused by the

above described signal variability.

A more spatially oriented approach is to utilize error criteria

from pairwise time delay estimation (TDE). Usually this is done in

frequency domain with cross-spectral phase. Detection using the

the residual error of phase regression based TDE was proposed in

[4],[9], where a low value of error was interpreted as an indication

of activity. In [10],[11], error criteria were computed from the pair-

wise generalized correlation function (GCC) [12]. Although these

methods do not employ a signal model, they are affected by the sig-

nal and background properties through the cross-spectral phase.

This work addresses the detection robustness by proposing ar-

ray level features that set restrictions only in the spatial domain by

assuming an approximate local planar wave model. The proposed

features utilize only the directional properties of received signals by

looking at the estimated time delays and the propagation vector [13].

This makes the features usable also in applications involving wide-

band signals.

The remaining parts of the paper are organized as follows. Sec-

tion 2 explains the required background theory and proposes the ac-

tivity detection features. Data recording setup and experiment re-

sults are given in Section 3. Section 4 provides a commentary of the

results. The paper is summarized in Section 5.

2. ACTIVITY DETECTION

2.1. Direction of arrival estimation

This subsection outlines briefly the local planar wave model for prop-

agation vector estimation. This is done in order to develop the nota-

tion required for presenting the proposed features.

Consider a pair of microphones m that receive a signal prop-

agating as a planar wave. The angle of arrival of the wavefront θ

determines the time delay τm between microphone outputs:

τm =
dm

c
cos(θ), (1)

where dm is the distance between the microphones and c is the wave

propagation speed. Now let xm be the vector connecting the micro-
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phones of the pair. In addition, define the propagation vector of the

planar wave by k := c−1
n, where n is the unit normal of the wave-

front, pointing to the propagation direction. Using these definitions,

we have dm = ‖xm‖ and c−1 = ‖k‖. Now (1) can be presented in

vector form using dot product [13]

τm = xm · k. (2)

Equations for all microphone pairs in the array can be combined as

a group of linear equations

τ = Xk, (3)

where

τ =
ˆ

τ1, τ2, . . . , τM

˜T
, X =

ˆ
x1, x2, . . . , xM

˜T
, (4)

and M is the number of microphone pairs. Direction of arrival

(DOA) estimation requires (3) to be solved. This can be done, for

example, with the least squares solution [14]

k̂ =
“
X

T
X

”−1

X
T
τ̂ . (5)

The estimated pairwise time delays τ̂ can be obtained with any method,

e.g., with the one based on regression using cross-spectral phase

mentioned in [4],[9] or GCC-based methods described in [12].

It should be emphasized, that the above method has been ex-

plained only to render the background needed for the proposed fea-

tures. Any other method can be used for DOA or location estimation.

The above method is just used to provide the activity features, which

are proposed in the following section.

2.2. Features for activity detection

Three error statistics, and their variances, are proposed as features

for activity detection: a lower bound of the DOA estimation error,

a test on linear dependence of time delays, and the residual distance

of time delays from the DOA estimate. In comparison to previous

approaches, the proposed features differ by operating only on the

values of the estimated time delays and the propagation vector. Use

of a specific TDE method, or knowledge on its statistical properties

are not required. The features are discussed below in more detail,

and their computation is summarized as a block diagram in Fig. 1.

If the microphone array is three dimensional (i.e., the rank of

matrix X is 3), the wave propagation speed is not needed to solve

(3) for k. Consequently, prior information about the propagation

speed can be compared to the norm of the propagation vector. In

[15], it was shown that this kind of comparison gives a lower bound

for the DOA estimation error. This lower bound is proposed as the

first feature

F1 :=
???c‖k̂‖ − 1

??? . (6)

If the array contains at least four microphones, time delays can

be tested for errors with confidence factors [16]. These factors utilize

the linear dependence of time delays by summing delays on closed

paths in the array, e.g., time delays in a triangle formed by three

microphones. The actual confidence is obtained by combining all

closed paths (e.g., all triangles) that include a given time delay.

For activity detection, the proposed feature is the mean of confi-

dences of all time delays available from the array

F2 :=
1

M

MX
m=1

Πm, (7)

Time 
delay

estimation

DOA
estimation

F2 V2

V1F1

V3F3

Fig. 1. Block diagram of feature computation.

where M is the number of microphone pairs and Πm is the normal-

ized confidence factor (NCF) for time delay τm. The triangular NCF

are computed with [16]

Π(i,j) =
1

N − 2

NX
n=1

n �=i,j

c
??τ̂(i,j) + τ̂(j,n) + τ̂(n,i)

??
2

`
‖x(i,j)‖ + ‖x(j,n)‖ + ‖x(n,i)‖

´ , (8)

where N is the number of microphones. Indices i and j refer to the

microphones of pair m in (7).

The third proposed feature is the distance between the estimated

time delays and the time delays projected by the solution (5). There

are several ways to compute the distance, but for consistency we use

the Euclidian distance

F3 := ‖τ̂ − Xk̂‖, (9)

that is minimized by (5). The distance of time delays from the so-

lution has been proposed as an error metric earlier [4]. However,

because the distance is closely related to solving (3) and it describes

the “fit” of the estimated propagation vector to the TDE data, it is

proposed here as an activity feature.

Rapid changes of these three features are an indication of DOA

estimation errors. Therefore, the short-term variances of k past val-

ues of features are used as activity features:

Vi(n) := var{Fi(n), Fi(n − 1), , . . . , Fi(n − k + 1)}, (10)

where i is the feature index and n is the frame index.

3. EXPERIMENTS

The proposed features were tested using data recorded in a hall-

like room with dimensions 5.8 m × 8.3 m × 3.5 m. Data was ac-

quired with a four microphone tetrahedron array, with edge length

of 0.36 m. The array was located 1.25 m above the center of the

floor. Recording sampling rate was 48 kHz.

Eight loudspeakers, located in approximate elliptic fashion a-

round the array, were used as sound sources. Distances of loudspeak-

ers from the array ranged from 2.2 m to 3.5 m, and loudspeakers

were 0.39–0.84 m above the array base. Room reverberation times

(to 60 dB attenuation) were, depending on the location of source and

microphone, between 0.46–0.56 s.

Source signals consisted of three noise samples, three music

samples, and six speech samples. Noise samples were maximum

length sequences (MLS), that are pseudorandom sequences whose

autocorrelation function approximates the unit impulse [17]. The

speech samples were generated by combining utterances from the

TIMIT database [18]. Three of them contained a female speaker, and

three a male speaker. Duration of all used samples was 15 seconds.

Each of the samples was played through all of the loudspeakers in-

dividually with three second pauses in between. This resulted into a

test signal including 96 distinct samples and 1725 seconds of data.
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Feature Noise Music Speech Overall

F1 fn 9.9 18.6 24.3 19.0

fp 22.1 19.2 21.7 21.2

F2 fn 0.8 8.5 18.7 11.2

fp 6.0 5.1 7.0 6.4

F3 fn 0.3 3.2 7.2 4.3

fp 40.7 41.8 44.7 43.4

V1 fn 1.8 13.3 31.3 18.7

fp 10.4 11.9 21.6 17.5

V2 fn 5.1 11.3 30.8 18.8

fp 11.0 9.8 26.1 20.0

V3 fn 1.9 12.7 26.2 16.2

fp 8.8 7.9 11.7 10.4

Table 1. Performance of proposed features in activity detection by

signal type. Performance is measured with relative amount (%) of

false negative (fn) and false positive (fp) detections.

In addition to distortions caused by room reverberation, signal

quality was artificially degraded by adding zero-mean, uncorrelated,

Gaussian white noise to the microphone data during the estimation

process. This lowered the SNR average to 14 dB. SNR variation

was, depending on the frame signal content, between 0–25 dB.

DOA estimation and feature computation was performed using

8192 sample windows with 50 % overlap. Pairwise time delays were

estimated using the GCC-PHAT estimator [12]. This method was

chosen because it is simple and it has been used in prior studies, e.g.,

[11]. However, the proposed features do not require the TDE method

to be GCC-based and therefore, recalling the comment made at the

end of Section 2.1, any other TDE method could have been used.

Time delays were estimated with the precision allowed by the

sampling rate, without interpolation, in order to verify the usability

of the features when accurate TDE is not available. Direction of

arrival was estimated framewise with (5) and the proposed features

were computed for each frame. Length of history for variance based

features was k = 5 frames, which corresponds to 512 ms.

Activity detection was performed on each frame using the pro-

posed features. Detection threshold was variable, and it was set us-

ing exponentially weighted moving average over the feature history.

This simple method was chosen in order to test and illustrate the

capabilities of the features.

Measured detection performance criteria were false negative (fn),

the relative amount of active frames detected as inactive; and false

positive (fn), the relative amount of inactive frames detected as ac-

tive. Reference activity of speech samples was obtained using the

ITU-T P.56 speech level metric [19]; activity threshold was set to

the level of the noise added in the TDE process. Performance of the

proposed features in detection is given in Table 1.

To evaluate the significance of activity detection for DOA es-

timation, angular RMS error for two-dimensional DOA estimation

was computed from correctly detected active frames. The error val-

ues are given in Table 2. The false positive frames are not included

in the DOA error assesment, because there is not a reference direc-

tion for periods of inactivity. This is not an unfair scoring, because

the contribution of false positive detections was already included in

the detection accuracy analysis in Table 1.

As seen in Table 1, all features, except F3, can provide overall

detection error rates smaller than 22 %. Within this dataset, speech

signals are the most difficult to detect correctly. Even the best fea-

ture, F2, has fn rate of 18.7 % for speech. The variance based fea-

Detector Noise Music Speech Overall

No detection 3.7 14.7 23.0 17.6

F1 1.0 7.6 9.5 7.4

F2 1.0 5.0 7.0 5.3

F3 2.2 11.9 21.2 15.6

V1 1.0 4.5 14.1 9.2

V2 1.7 6.9 14.4 9.9

V3 1.0 5.2 18.0 11.9

Table 2. Angular RMS error in degrees for two dimensional direc-

tion of arrival estimation using correctly detected active frames.

tures do not improve the performance on speech, except for V3. This

is not surprising, because the performance of F3 was bad, but it sug-

gests that the single threshold detection is not suitable for use with

F3 and V3.

The importance of array based detection is clearly visible in the

DOA estimation errors in Table 2. Feature F2, that had the best de-

tection performance, can lower the estimation error below one third

of the original for speech and overall.

4. DISCUSSION

The purpose of this work was to introduce a framework for signal in-

dependent spatial domain activity detection. The results suggest that

the proposed signal independent features carry information about

spatial activity. They could be used to support activity detection

in microphone arrays, especially when other signal or source spe-

cific detection methods are unreliable. However, to achieve an ac-

ceptable level of detection performance, further work is required to

develop the features and especially detection. Clearly, a more so-

phisticated detection method is needed, for instance, one that uses

the features and their dependencies jointly through a feature-space

approach. Also, combining the features with other detection tech-

niques is a matter worth studying.

The detection performance is at most moderate in comparison

to other approaches, specifically [8], where detection error rates be-

low 10% were reported for speech at 15 dB SNR. However, keeping

in mind that in this work the detection method was simple and not

aggressively tuned, the results are promising.

The reduction achieved in RMS errors for DOA estimation is a

clear illustration of the significance and the need for spatial activity

detection. With this kind of detection, an array processing system

can not only give the localization estimate, but also indicate that the

estimate is accurate, and from a real source.

The proposed features did not assume a certain type of signals

(except for the spatial behavior). This makes them usable in general,

also in scenarios involving wideband signals. The features are not

strictly bound to acoustic properties of signals, which enables them

to be used also beyond the audio domain.

Computational load and memory requirements of propagation

vector and feature estimation are minimal in comparison to time de-

lay estimation. Furthermore, the feature computation can be per-

formed without delay, as several passes through the data are not re-

quired. For these reasons, the proposed features can easily be used

in a real-time array processing system without additional or more

complex hardware.

This usability is further supported by the fact that the features

can be used with any TDE method, not just the GCC-based approach

taken in these experiments. In fact, the GCC-based methods are

IV ­ 1111



known to perform poorly in reverberation [20]. Therefore, depend-

ing on the application, some other methods (e.g., [4]) may be more

suitable. At any rate, the performance and accuracy of TDE affects

the activity detection capability, thus selection of a proper method

is important. However, the proposed features will not break down

completely with erroneous TDE. Instead, they will indicate that the

computed time delay or DOA estimates are unreliable. The length of

the processing window is also an application dependent performance

factor. The window length used in the experiments (171 ms) is quite

long, e.g., for speech applications that require fast updates.

The loudspeaker experiment discards some imperfections that

are present in real life conditions, including source movement,

changes in orientation, and radiation patterns. This makes the es-

timation considerably easier than in real life scenarios. This must

be kept in mind when evaluating the results. A comprehensive per-

formance evaluation would require a more challenging experimental

setup, with real sources such as vehicles, human subjects etc. The

assumption on planarity is required for feature computation. Al-

though in these experiments sources were relatively close to the ar-

ray, with distances 6-10 times the size of the array, this did not cause

any problems. This suggests that the features could also be used in

combination with localization methods assuming spherical waves.

Studying the achievable benefits in such combinations is a topic left

for further research. However, in situations where source distances

are small compared to the array size, wavefront curvature is expected

to cause degradations in detection performance.

5. SUMMARY

This work proposed new activity detection features for microphone

arrays. The features were computed using spatial information only,

from estimated propagation vector and time delays. This made the

features free from assuming a certain type of signals, and usable

in wideband applications. In addition, the features are suitable for

delay-constrained real-time operation. The performance of the pro-

posed features was tested using recorded data. Given the simplicity

of the used detection method, the achieved level of performance is

acceptable. Although there is room for improvement, results sug-

gest that the proposed features can be used to detect activity and to

evaluate estimate reliability.

6. REFERENCES

[1] J. C. Chen, Y. Kung, and R.E. Hudson, “Source localization

and beamforming,” IEEE Signal Processing Magazine, vol.

19, no. 2, pp. 30–39, 2002.

[2] S. Chen, P. Sun, and B. Bridge, “Automatic traffic mon-

itoring by intelligent sound detection,” in Proceedings of

the IEEE Conference on Intelligent Transportation Systems

(ITSC), 1997, pp. 171–176.

[3] R. Chellappa, G. Qian, and Q. Zheng, “Vehicle detection and

tracking using acoustic and video sensors,” in Proceedings of

the 2004 IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), 2004, vol. III, pp. 793–796.

[4] M. Brandstein and H. Silverman, “A practical methodology for

speech source localization with microphone arrays,” Computer

Speech & Language, vol. 11, no. 2, pp. 91–126, 1997.

[5] Y. Huang, J. Benesty, G. W. Elko, and R. M. Mersereau, “Real-

time passive source localization: A practical linear-correction

least-squares approcah,” IEEE Transactions on Speech and

Audio Processing, vol. 9, no. 8, pp. 943–956, 2001.

[6] A. Spriet, M. Moonen, and J. Wouters, “The impact of speech

detection errors on the noise reduction performance of multi-

channel Wiener filtering and Generalized Sidelobe Cancella-

tion,” Signal Processing (Article in Press), 2005.

[7] Y. Hioka and N. Hamada, “Voice activity detection with array

signal processing in the wavelet domain,” in Proceedings of the

XI European Signal Processing Conference (EUSIPCO), 2002,

pp. 255–258.

[8] I. Potamitis, “Estimation of speech presence probability in the

field of microphone array,” IEEE Signal Processing Letters,

vol. 11, no. 12, pp. 956–959, 2004.

[9] Y. Chan, R. Hattin, and J. Plant, “The least squares estimation

of time delay and its use in signal detection,” IEEE Transac-

tions on Acoustics, Speech, and Signal Processing, vol. 26, no.

3, pp. 217–222, 1978.

[10] D. Bechler and K. Kroschel, “Reliability criteria evaluation for

TDOA estimates in a variety of real environments,” in Proceed-

ings of the 2005 IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), 2005, vol. IV, pp.

985–988.

[11] K. Varma, T. Ikuma, and A. A. Beex, “Robust TDE-based

DOA-estimation for compact audio arrays,” in Proceedings of

the Second IEEE Sensor Array and Multichannel Signal Pro-

cessing Workshop (SAM), 2002, pp. 214–218.

[12] C. Knapp and G. C. Carter, “The generalized correlation

method for estimation of time delay,” IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. 24, no. 4, pp.

320–327, 1976.

[13] S. Haykin and J. Justice, Array signal processing, Academic

Press, 1985.

[14] J. Yli-Hietanen, K. Kalliojärvi, and J. Astola, “Low-

complexity angle of arrival estimation of wideband signals us-

ing small arrays,” in Proceedings of the 8th IEEE Signal Pro-

cessing Workshop on Statistical Signal and Array Signal Pro-

cessing, 1996, pp. 109–112.
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