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ABSTRACT

For a number of training samples T that do not exceed the
number of antenna elements M , we propose a non-degenerate
normalized LR test that can be used in various detection-
estimation problems. For the null hypothesis this test is de-
scribed by a scenario-free probability density function.

1. INTRODUCTION

In many practical problems in adaptive detection-estimation,
the number of representative training samples is very limited
and therefore additional a priori assumptions are usually im-
posed to make smaller sample support sufficient for accept-
able detection-estimation performance.

One of the well-known families of this kind is the one with
low signal subspace dimension. Here the number m of the
covariance matrix eigenvalues that exceed the minimal eigen-
value (equal to ambient white noise power) is significantly
smaller then the matrix dimension M (m < M).

In the most general case an admissible covariance matrix
could be introduced in the form

R = σ2
0IM + RS ; RS = UmΛ0UH

m ; Λ0 = Λm − σ2
0Im, (1)

where Um ∈ CM×m and Λm ∈ Rm×m
+ are the (M×m)-variate

and (m×m)-variate matrices of “signal subspace” eigenvec-
tors and (positive) eigenvalues respectively.

For localization of the “signal subspace” of such a “low
rank” covariance matrix, the minimum sample support (ie the
number of independent identically distributed training sam-
ples) is equal to m. This fact has been heavily exploited for
justification of the well-known loaded sample matrix inversion
(LSMI) algorithm in [1][2], the Hung-Turner fast projection
adaptive beamformer [3][4], and “fast maximum likelihood”
[5].

For example, in [6] it has been first analytically proven
that under rather mild assumptions regarding covariance ma-
trix eigenvalues in (1), average SNR losses for the LSMI tech-
nique, compared with the clairvoyant filter are equal to ap-
proximately 3dB for sample support T , where

T � 2m (2)
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while for the traditional SMI technique the required sample
support is equal to T � 2M for the same average loss [7].

Similarly, it is well known that for strong enough signal-
to-noise ratio, multiple signal classification (MUSIC) can pro-
vide accurate DOA estimates for the number of training sam-
ples equal to the number of independent sources m.

While adaptive filters and DOA estimation exist for under-
sampled (T < M) training conditions, the modern GLRT-
based detection-estimation techniques do not embrace this
scenario, mainly because proper likelihood ratios have not
been yet introduced.

For multi-variate complex Gaussian training data xt, t =
1, . . . , T , xt ∼ CN (0, R0) the likelihood function w.r.t para-
metric description of its covariance matrix R exists and is
non-degenerate even under under-sampled training conditions:

L(XT , R) =

»
1

π det R
exp{−Tr[R-1R̂]}

–T

(3)

where

R̂ =
1

T

TX
j=1

xjx
H
j , T < M, R > 0 (4)

But the standard approach to form the likelihood ratio
(see [8]) as

LR(R) =
L(XT , R)

maxR L(XT , R)
(5)

can not be used here, since det R̂ = 0 in this case. For T � M ,
this approach leads to (after the methodology in [8])

LR(R) =

"
det R-1R̂ exp M

exp{TrR-1R̂}

#T

� 1 (6)

since

max
R

L(XT , R) =

»
exp (−M)

π det R̂

–T

, for R = R̂ (7)

In [9], we demonstrated that the LR(R) (6) as well as
it’s variants such as the “sphericity test” [8] are instrumental
for GLRT-based detection-estimation due to the invariance
property:

f [LR(R0)] = f

"
det Ĉ exp M

exp{Tr Ĉ}

#
(8)
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where Ĉ ∼ CW(T � M, M, IM ), ie Ĉ is a random matrix with
scenario-free complex Wishart p.d.f., fully specified by M and
T [10]. This invariance property, along with the straight-
forward observation

max
R∈R

LR(R) > LR(R0), R0 ∈ R (9)

allows one to address many complicated detection-estimation
problems that would not be properly addressed by conven-
tional detection-estimation techniques [11],[12].

Obviously, for under-sampled training conditions we would
like to have a similar instrument, and thus for the under-
sampled training data that belong to the family (1) we need
the likelihood ratio LRu(R) that satisfies the following con-
ditions.

a) Normalization condition:

0 < LRu(R) � constant (10)

b) Transition behavior: LRu(R) should be an “ana-
lytic extension” of the LR(R) (6), ie

LRu(R) = LR(R) for T � M (11)

c) Invariance property:

f [LRu(R0)] = f(M, T ) (12)

Derivation of the LRu(R) that meets these requirements
are introduced in Section 2 and summarized in Section 3.

2. LIKELIHOOD RATIO FOR
UNDER-SAMPLED GAUSSIAN SCENARIO

The under-sampled covariance matrix R̂ in (4) is rank-deficient
and therefore is described by the anti-Wishart distribution
[13]. Specifically, the sample matrix

Ĉ = R
− 1

2
0

TX
j=1

xjx
H
j R

− 1
2

0 ; xj ∼ CN (0, R0) (13)

is described by the p.d.f. (denoted ACW(T < M, M, IM )):

KT,M

“
det Ĉ[T ]

”T−M

e− Tr Ĉ
MY

l=T+1

MY
p=T+1

δ

 
det Ĉ[T ]lp

det Ĉ[T ]

!

(14)

Here KT,M is a normalisation constant, Ĉ[T ] is the upper

left hand T × T sub-matrix of the original matrix Ĉ:

Ĉ =

"
Ĉ[T ] ∗

∗ ∗

#
. (15)

Furthermore, for each l, p > T the (T +1)×(T +1) matrix

Ĉ[T ]lp in (14) is obtained by adjoining the l-th row and the

p-th column of Ĉ to Ĉ[T ]:

Ĉ[T ]lm =

2
66664

Ĉ1p

Ĉ[T ]

...

ĈTp

Ĉl1 · · · ĈlT Ĉlp

3
77775 . (16)

The number of independent delta-functions in (14) is (M−
T )2 and therefore, for T < M , there are only (2MT − T 2)

real-valued independent entries within matrix Ĉ, namely the
first T rows (columns) of this matrix that uniquely specifies

the entire matrix Ĉ. Obviously, one can select another set
of covariance matrix Ĉ entries with the same number of real-
valued degrees of freedom, that uniquely describe Ĉ with rank
T .

Strictly speaking, the “under-sampled” likelihood ratio
should involve all independent entries within Ĉ that uniquely
specify this matrix, and any test that considers a subset ΩĈ

of the covariance matrix Ĉ entries with a smaller number of
(real-valued) degrees of freedom:

DOF (ΩĈ) < DOF (Ĉ) = 2MT − T 2, (17)

may be treated as an “information-missing” one.
On the other hand, the “low rank” covariance matrix R0

in (1) is also described by the limited number of degrees of
freedom

DOF (R̂0) = 1 + 2Mm − m2 (18)

where (2Mm − m2) is the number of DOF that uniquely
describe the rank m signal counterpart RS of the matrix R0.
Therefore, if the number of independent elements in ΩR̂, con-
sidered for hypothesis testing regarding RS in (1) exceeds
DOF (RS), then one can expect that consistent (with SNR
→ ∞) testing is possible.

In fact, this statement is just another version of the well-
known requirement on a sample support (T � m) for “low-
rank” covariance matrix R0.

Therefore, for m < T < M , we consider a (2T − 1) wide

band of the matrix R̂:

ΩR̂ : [r̂ij ] |i − j| � T − 1; R̂ = [r̂ij ] i, j = 1, . . . M.(19)

Note that the number of real-valued degrees of freedom
for this band is equal to

DOF (R̂B(T )) = 2MT − T 2 − (M − T ) (20)

and is only (M−T ) degrees short from DOF(R̂) in (17). Since

ΩR̂ does not uniquely specify the rank T matrix R̂, the band
matrix [rij ] |i − j| � T − 1 may be completed in different

ways, including the rank T completion R̂. At the same time,

dealing with ΩR̂, we may consider different non-degenerate
completions, including the one with the maximal(non-zero)
determinant, specified by the Dym-Gohberg band-extension
method [14], [15].

Theorem 1 Given an M-variate Hermitian matrix R̂ ≡ {r̂ij}
i, j = 1, . . . , M , suppose that2
64

r̂i,i . . . r̂i,i+p

...
...

r̂i+p,i . . . r̂i+p,i+p

3
75 > 0, for i = 1, . . . , M − p (21)

for q = 1, . . . , M let2
64

Ŷq,q

...

ŶL(q),q

3
75 =

2
64

r̂q,q . . . r̂q,L(q)

...
...

r̂L(q),q . . . r̂L(q),L(q)

3
75

-1 2
64

1
0
...
0

3
75 (22)
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2
64

ẐΓ(q),q

...

Ẑqq

3
75 =

2
64

r̂Γ(q),Γ(q) . . . r̂Γ(q),q

...
...

r̂q,Γ(q) . . . r̂q,q

3
75

-1 2
64

0
...
0
1

3
75 (23)

where L(q) = min{M, q + p} and Γ(q) = max{1, q − p}. Fur-
thermore, let the M-variate triangular matrices U and V be
defined as

V̂ij ≡
(

ŶijŶ− 1
2

jj for j � i � L(j)
0 otherwise

(24)

Ûij ≡
(

ẐijẐ− 1
2

jj for Γ(j) � i � j
0 otherwise

(25)

then the M-variate matrix given by

R̂(p) = (ÛH)-1Û -1 = (V̂ H)-1V̂ -1 (26)

is the unique p.d. Hermitian matrix extension that satisfies
the following condition:j {R̂(p)}ij = r̂ij for |i − j| � p,

{(R̂(p))-1}ij = 0 for |i − j| > p.
(27)

In [15],[16] it was proven that amongst all band exten-
sions, extension (27) has the maximal determinant. This
extension also has the unique property among possible ex-
tensions that, according to (26)

det[R̂(p)]-1 =

MY
q=1

Ŷqq =

MY
q=1

eT
q R̂-1

q eq (28)

where R̂q is the (L(q) − q + 1) × (L(q) − q + 1) Hermi-

tian central block matrix in R̂, specified in (22). One can
see that the Dym-Gohberg band extension method, applied
to the rank-deficient sample matrix R̂ (4), transforms this

matrix into a positive definite Hermitian matrix R̂(p) which
within the (2p + 1)-wide band has exactly the same elements

as the sample matrix R̂.
Moreover, this p.d. matrix R̂(p) is uniquely specified by

all different (p + 1)-variate central block matrices R̂, and the
only necessary and sufficient condition for such transforma-
tions to exist, is the positive definiteness of all (p+1)-variate

submatrices R̂q in (21). Let p � T − 1. Then for all m in (1)
such that m < p � T − 1, we have

DOF (RS) < DOF (R̂(p)), (29)

while the minimal eigenvalue in all (p+1)-variate matrices Rq

is equal to the white noise power σ2
0 in (1). For this reason,

we can introduce the following likelihood ratio Λ
(p)
0 (R) for

our under-sampled scenario:

Λ
(p)
0 (R) =

"
det(R̂(p)[R(p)]-1) exp M

exp{Tr R̂rR-1}

# 1
M

(30)

Here R(p) is the Dym-Gohberg p-band transformation of
the tested positive definite covariance matrix model R, which
has the properties

R(p) = DGp(R); (R
(p)
ij ) = rij for |i − j| � p

[(R(p))-1]ij = 0 for |i − j| > p
(31)

R̂r = lim
α→0

1

T
(αI + XT XH

T ); XT = {x1, . . . , xT }. (32)

The loading factor α is sufficiently small, such that

DG(R̂) = DG(R̂r) (33)

which means that α should be negligible:

α � min
q

λmin(R̂q) (34)

Note that Λ
(p)
0 (R) is dependent on the determinant of

R̂(p) and R(p) which in (28) is given as a function of R̂q block
submatrices. Therefore, we do not need to explicitly con-

struct the Dym-Gohberg extensions for Λ
(p)
0 (R) calculation.

Let us demonstrate that the LR given in (30) meets the
requirement (a) − (c) in (10)-(12).

Proper LR Normalisation (requirement a)).

max Λ
(p)
0 < exp 1; Λ

(p)
0 = Λ

(p)
0 (R̂r) = 1 (35)

Indeed, for R̂r that satisfies (32)-(34), we have

lim
α→0

Tr R̂r[R̂r + βI]-1 = T
h
1 − βTr {(XH

T XT )-1}
i

> 0 (36)

lim
α→0

det[R̂(p)
r DGp[R̂r + βI]-1] = 1; β < min

q
λmin(R̂q) (37)

Transition to the Conventional LR (requirement b)).

Obviously, for p = M − 1, T � M , DG{R̂} = R̂, while

Tr R̂rR = Tr R̂R for α that satisfies (34).

Scenario Independence (requirement c)).

We have to demonstrate that for the actual covariance
matrix R = R0, the p.d.f. for

Λ
(p)
0 (R0) =

"
det(R̂(p)(R

(p)
0 )-1) exp M

exp{Tr R̂r(R0)-1}

# 1
M

(38)

does not depend on R0, and is fully specified by parame-
ters M , T , and p.

Theorem 2 (see Theorem 2 in [17])
Let R0 be the true covariance matrix of the training data

XT ∼ CWT (0, R0). Then the p.d.f. of Λ
(p)
0 (R0) does not

depend on the scenario, and can be expressed as the p.d.f. of
a product of 2M independent random numbers αq and Ωq:

Λ
(p)
0 (R0) = exp 1.

"
MY

q=1

Ωqαq

# 1
M

(39)

where

αq ∼ α
(T−ν−1)
q (1 − αq)

(ν−1)

B[ν, T − ν]
1 � ν ≡ L(q) − q � p (40)
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Ωq =
Cqq

T
exp

»
−Cqq

T

–
, Cqq ∼ CT−1

qq

Γ(T )
exp(−Cqq) (41)

The l-th moment of Λ
(p)
0 (R0) is

ε
jh

Λ
(p)
0 (R0)

il
ff

=
T TM exp(l)ˆ

T + l
M

˜(TM+l)

MY
q=1

Γ
`
T + l

M
− ν(q)

´
Γ(T − ν(q))

(42)

Note that loading factor α → 0 is introduced in R̂r to
secure proper transition to conventional LR(R), so that

lim Tr R̂rR̂
-1
r = M (43)

but it needs to remain small enough for

det R̂(p)
-1

det DGp(αI0 + R̂) → 1. (44)

At α = 0
Tr R̂[I − XT (XH

T XT )−1XH
T ] = 0, (45)

so the term exp(M) in (38) is not required.
The introduced likelihood ratio (30) also allows us to spec-

ify the projection matrix

lim
α→0

R̂-1
r =

h
I − XT (XH

T XT )-1XH
T

i
= [I − PXT ] (46)

as an under-sampled maximum likelihood (USML) inverse
covariance matrix estimate, “complementary” to the rank-
deficient (USML) covariance matrix estimate

lim
α→0

α-1R̂r = XT XH
T . (47)

3. SUMMARY AND CONCLUSION

In this paper we proposed the likelihood ratio test to be used
within the GLRT-based adaptive detection-estimation frame-
work for under-sampled (T < M) training conditions. This
LR involves sample covariance lags within the (2T − 1)-wide

band of the rank T sample covariance matrix R̂, and the
maximum entropy (determinant) Dym-Gohberg extension of
this band matrix. The introduced LR is normalized, coin-
cides with the conventional LR test on covariance matrices
for conventional (Wishart) training conditions (T � M), and
most importantly, is described by a scenario-free p.d.f. for the
actual covariance matrix. This invariance property, together
with the observation that the properly maximized LR value
should always exceed the LR value produced by the true co-
variance matrix, is essential for efficient implementation of
GLRT-based adaptive detection-estimation.
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