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Abstract— The parametric Rao test for a multichannel adaptive signal
detection problem is derived by modeling the disturbance signal as a
multichannel autoregressive (AR) process. Interestingly, the parametric
Rao test takes a form identical to that of the recently introduced
parametric adaptive matched filter (PAMF) detector. The equivalence
offers new insights into the performance and implementation of the
PAMF detector. Specifically, the Rao/PAMF detector is asymptotically (for
large samples) a parametric generalized likelihood ratio test (GLRT), due
to an asymptotic equivalence between the Rao test and the GLRT. The
asymptotic distribution of the Rao test statistic is obtained in closed-form,
which follows an exponential distribution under H0 and, respectively,
a non-central Chi-squared distribution with two degrees of freedom
under H1. The non-centrality parameter of the non-central Chi-squared
distribution is determined by the output signal-to-interference-plus-
noise ratio (SINR) of a temporal whitening filter. Since the asymptotic
distribution under H0 is independent of the unknown parameters, the
Rao/PAMF asymptotically achieves constant false alarm rate (CFAR).
Numerical results show that these results are accurate in predicting the
performance of the parametric Rao/PAMF detector even with moderate
data support.

I. INTRODUCTION

Space-time adaptive processing (STAP) based multichannel signal
detectors have been successfully used to mitigate the effects of clutter
and/or interference in radar, remote sensing, and communication
systems [1]-[3]. However, traditional STAP detectors, including the
well-known RMB detector by Reed, Mallett, and Brennan [4], Kelly’s
generalized likelihood ratio test (GLRT) [5], the adaptive matched
filter (AMF) detector [6], and the adaptive coherence estimator (ACE)
detector [7], usually involve estimating and inverting a large-size
space-time covariance matrix of the disturbance signal (viz., clutter,
jamming, and noise) for each test cell using training data. This
entails high complexity and large training requirement. While the first
difficulty may create real-time implementation burdens, the second
implies that such covariance-matrix based techniques may not be
used in heterogeneous (due to varying terrain, high platform altitude,
bistatic geometry, conformal array, among others) or dense-target
environments, which offer limited training data.

Addressing the above issues has become an important topic in
recent multichannel signal detection research. One effective way to
reduce the computational and training requirement is to utilize a
suitable parametric model for the disturbance signal and exploit the
model for signal detection. For example, multichannel autoregressive
(AR) models have been found to be very effective in representing the
spatial and temporal correlation of the disturbance [8]. A parametric
detector based on such a multichannel AR model is developed
in [8], which is referred to as the parametric adaptive matched
filter (PAMF). The PAMF detector has been shown to significantly
outperform the aforementioned covariance-matrix based detectors for
small training size at reduced complexity [8] [9].
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Although intuitively sound, the PAMF detector was obtained in a
heuristic approach by modifying the AMF test statistic. Specifically, it
replaces the joint space-time whitening incurred by the AMF detector
with a two-step approach that involves temporal whitening via an
inverse moving-average (MA) filter followed by spatial whitening.
The test threshold, false alarm and detection probabilities were
determined primarily by computer simulation, due to limited analysis
available for the PAMF detector.

In this paper, we present the parametric Rao test for the multichan-
nel signal detection problem and perform the asymptotic analysis of
the test statistic. The generic Rao test is known to offer a standard
solution to a class of parameter testing problems. It is easier to derive
and implement than the GLRT, and is also asymptotically (for large-
sample) equivalent to the latter. Other attributes of a generic Rao
test can be found in [10]. We show that, interestingly, the parametric
Rao test takes a form identical to that of the PAMF detector in [8].
Moreover, if the ML estimator is utilized, the parametric Rao/PAMF
detector is asymptotically a parametric GLRT. Asymptotic analysis
shows that the parametric Rao/PAMF detector achieves constant
false alarm rate (CFAR). Numerical results show that our asymptotic
results are accurate in predicting the performance of the Rao/PAMF
detector even when the data size is modest.

Notation: Vectors (matrices) are denoted by boldface lower (upper)
case letters; all vectors are column vectors; superscripts (·)T , and
(·)H denote transpose and complex conjugate transpose, respectively;
CN (µ,R) denotes the multivariate complex Gaussian distribution
with mean vector µ and covariance matrix R; C denotes the complex
number field.

II. DATA MODEL AND PROBLEM STATEMENT

The problem under consideration involves detecting a known
multichannel signal with unknown amplitude in the presence of
spatially and temporally correlated disturbance (e.g., [1]):

H0 : x0(n) = d(n), n = 0, 1, . . . , N − 1,

H1 : x0(n) = αs(n) + d(n), n = 0, 1, . . . , N − 1,
(1)

where all vectors are J × 1 vectors, J denotes the number of spatial
channels, and N is the number of temporal observations. Henceforth,
x0(n) is called the test signal, s(n) is the signal to be detected
with amplitude α, and d(n) is the disturbance signal that may be
correlated in space and time. In addition to the test signal, it is
assumed that a set of target-free training or secondary data vectors
xk(n), k = 1, 2, . . . , K and n = 0, 1, . . . , N − 1, are available to
assist signal detection.

Let s =
[
sT (0), sT (1), . . . , sT (N − 1)

]T
, and d and xk are

formed similarly from d(n) and xk(n), respectively. Then, (1) can
be more compactly written as

H0 : x0 = d,

H1 : x0 = αs + d.
(2)
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Clearly, the composite hypothesis testing problem (1) or (2) is
also a two-sided parameter testing problem that tests α = 0 against
α �= 0. The general assumptions in the literatures ([1]-[2], [4]-[8])
are as follows:

• AS1: the signal vector s is deterministic and known to the
detector;

• AS2: the signal amplitude α is complex-valued, deterministic,
and unknown;

• AS3: the secondary data {xk}K
k=1 and the disturbance signal

d (equivalently, x0 under H0) are independent and identically
distributed (i.i.d.) with distribution CN (0,R), where R is the
unknown space-time covariance matrix.

While Assumptions AS1 to AS3 are standard (e.g., [1]-[2], [4]-[7]),
we further assume the following:

• AS4: the disturbance signal d(n) can be modeled as a multi-
channel AR(P ) process with known model order P but unknown
AR coefficient matrices and spatial covariance.

Based on Assumption AS4, the secondary data {xk}K
k=1 are repre-

sented as

xk(n) = −
P∑

p=1

AH(p)xk(n − p) + εk(n), (3)

where {AH(p)}P
p=1 denote the J × J AR coefficient matrices,

εk(n) denote the driving multi-channel spatial noise vectors that
are temporally white but spatially colored Gaussian noise: εk(n) ∼
CN (0,Q), where Q denotes the J × J spatial covariance matrix.
Meanwhile, the test signal x0 is given by

x0(n) − αs(n)

= −
P∑

p=1

AH(p) {x0(n − p) − αs(n − p)} + ε0(n),
(4)

where α = 0 under H0, α �= 0 under H1, and ε0(n) ∼ CN (0,Q).
Let s̃(n) denote a regression on s(n) and x̃0(n) a regression on
x0(n) under H1:

s̃(n) = s(n) +

P∑
p=1

AH(p)s(n − p), (5)

x̃0(n) = x0(n) +

P∑
p=1

AH(p)x0(n − p). (6)

Then, the driving noise in (4) can be alternatively expressed as

ε0(n) = x̃0(n) − αs̃(n). (7)

The problem of interest is to develop a decision rule for the above
composite hypothesis testing problem using the test and training
signals as well as exploiting the multichannel parametric AR model.

III. PRIOR SOLUTIONS

A number of solutions to the above problem have been developed.
If the space-time covariance matrix R is known exactly, the optimum
detector that maximizes the output SINR is the matched filter (MF)
[6]:

TMF =

∣∣sHR−1x0

∣∣2
sHR−1s

H1
≷
H0

γMF, (8)

where γMF denotes the MF threshold. The MF detector is obtained
by a GLRT approach (e.g., [10]), by which the ML estimate of the
unknown amplitude α is first estimated and then substituted back
into the likelihood ratio to form a test statistic. It should be noted

that the MF detector cannot be implemented in real applications
since R is unknown. However, it provides a baseline for performance
comparison when considering any realizable detection scheme.

In practice, the unknown R can be replaced by some estimate,
such as the sample covariance matrix obtained from the secondary
data: R̂ = 1

K

∑K
k=1 xkx

H
k .Using R̂ in (8) leads to the so-called

AMF detector [6]:

TAMF =

∣∣∣sHR̂−1x0

∣∣∣2
sHR̂−1s

H1
≷
H0

γAMF, (9)

where γAMF denotes the AMF threshold. The AMF test is a CFAR
detector, which is a desirable property in radar systems. However,
they also entail a large training requirement. In particular, the sample
covariance matrix R̂ has to be inverted, which imposes a constraint on
the training size K ≥ JN to ensure a full-rank R̂. The Reed-Brennan
rule [4] suggests that at least K ≥ (2JN − 3) target-free secondary
data vectors are needed to obtain performance within 3 dB from the
optimum MF detector. Such a training requirement may be difficult
to met, especially in non-homogeneous or dense-target environments.
Besides excessive training, the computational complexity of these
detectors is also high, since R̂ has to be computed and inverted for
each test signal.

While the AMF test may be called a covariance-matrix based
technique as it involves computing and inverting R̂, the recently
introduced PAMF detector [8] utilizes a multichannel AR(P ) model
that allows spatial/temporal whitening to be implemented in a mul-
tichannel time-series fashion (see [8] for details):

TPAMF =

∣∣∣∑N−1
n=P

ˆ̃sH
P (n)Q̂−1

P
ˆ̃x0,P(n)

∣∣∣2∑N−1
n=P

ˆ̃sH
P (n)Q̂−1

P
ˆ̃sP(n)

H1
≷
H0

γPAMF, (10)

where Q̂P denotes an estimate of the spatial covariance matrix
Q, ˆ̃x0,P(n) and ˆ̃sP(n) are the temporally whitened test signal and
steering vector, respectively, using an inverse AR(P ) filter (i.e.,
a multichannel MA filter) whose parameters, along with Q̂P, are
estimated from the secondary data. In contrast to simultaneous spatio-
temporal whitening used in the AMF test, the PAMF detector per-
forms whitening in two distinct steps: temporal whitening followed by
spatial whitening. The parametric approach saves in both training and
computation, since the parameters to be estimated are significantly
fewer compared to covariance matrix based approaches.

IV. THE PARAMETRIC RAO TEST

A. Test Statistic

The parametric Rao test is derived in [9] and given by 1

TRao =
2

∣∣∣∑N−1
n=P

ˆ̃sH(n)Q̂−1 ˆ̃x0(n)
∣∣∣2∑N−1

n=P
ˆ̃sH(n)Q̂−1ˆ̃s(n)

H1
≷
H0

γRao, (11)

where γRao denotes the test threshold, which can be set by using the
results in Section IV-B, and ˆ̃s(n) and ˆ̃x0(n) denote, respectively, the
steering vector and test signal that have been whitened temporally:

ˆ̃s(n) = s(n) +

P∑
p=1

ÂH(p)s(n − p), (12)

ˆ̃x0(n) = x0(n) +

P∑
p=1

ÂH(p)x0(n − p), (13)

1Although the factor of 2 on the test statistic can be absorbed by the test
threshold, it is retained to keep the asymptotic distribution of the test statistic
more compact. See Section IV-B.
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where ÂH(p) denotes the ML estimate of the AR coefficient matrix
AH(p). Additional spatial whitening is provided by Q̂−1, which is
the inverse of the ML estimate of the spatial covariance matrix to be
specified next.

To present the ML estimates more compactly, let AH =[
AH(1), AH(2), · · · , AH(P )

] ∈ C
J×JP , which contains

all the coefficient matrices involved in the P -th order AR model,
and yk(n) =

[
xT

k (n − 1), xT
k (n − 2), · · · , xT

k (n − P )
]T

,
k = 0, 1, · · · , K, which contains the regression subvectors formed
from the test signal x0 or the k-th training signal xk. Then, the
ML estimates of the AR coefficients AH and the spatial covariance
matrix Q are obtained by

ÂH = −R̂H
yxR̂

−1
yy , (14)

Q̂ =
1

(K + 1)(N − P )

(
R̂xx − R̂H

yxR̂
−1
yy R̂yx

)
(15)

where the correlation matrices are computed by R̂xx =∑N−1
n=P

∑K
k=0 xk(n)xH

k (n), R̂yy =
∑N−1

n=P

∑K
k=0 yk(n)yH

k (n),
and R̂yx =

∑N−1
n=P

∑K
k=0 yk(n)xH

k (n).
Remark 1: The PAMF detector also involves estimating the AR

coefficients AH and the spatial covariance matrix Q [8]. Several
estimators were suggested, e.g., the Strand-Nuttall algorithm and
the least-squares (LS) estimator. The LS estimator yields better
performance. Our ML estimates differ from the LS estimates of [8]
in that we have used both the test and training signals to obtain these
estimates, whereas the LS estimator in [8] utilizes only the training
signals for parameter estimation. Our approach is similar to Kelly’s
GLRT [5], which also employs both the test and training signals for
parameter estimation. However, we shall stress that Kelly’s GLRT
does not exploit the multichannel parametric model as shown in (3)
and (4).

Remark 2: By comparing the parametric Rao test statistic (11) with
the PAMF test statistic (10), we can quickly see that if both detectors
use the ML estimator for parameter estimation, they are identical
except for a scaling factor of 2. Hence, the PAMF detector is a para-
metric Rao detector. Since the parametric Rao test is asymptotically
equivalent to the parametric GLRT, the PAMF detector with the ML
parameter estimates is also an asymptotic parametric GLRT. As we
shall see in Section IV-B, the equivalence offers additional insights
into the performance and implementation of the PAMF detector.

B. Asymptotic Analysis

We can show that the asymptotic distribution of the Rao/PAMF
test statistic is given by

TRao
a∼

{
χ2

2, under H0,

χ
′2
2 (λ), under H1,

(16)

where χ2
2 denotes the central Chi-squared distribution with 2 degrees

of freedom and χ
′2
2 (λ) the non-central Chi-squared distribution with

2 degrees of freedom and non-centrality parameter λ:

λ = 2|α|2
N−1∑
n=P

s̃H(n)Q−1s̃(n), (17)

where s̃(n) is the temporally whitened steering vector given by (5).
Note that λ is related to the SINR at the output of the temporal
whitening filter. Recall that a χ2

2 random variable is equivalent to an
exponential random variable with probability density function (PDF)
given by

fχ2
2
(x) =

1

2
exp

(
−1

2
x

)
, x ≥ 0. (18)
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Fig. 1. The quantile-quantile (QQ) plot of the parametric Rao/PAMF test
statistic and its asymptotic distribution under H0 (upper plot) and H1 (lower
plot), respectively, with J = 4, N = 32, and K = 8. Specifically, the x-axis
shows the ordered samples of the parametric Rao/PAMF test statistic, while
the y-axis shows the ordered samples of the asymptotic distribution.

The PDF of χ
′2
2 (λ) is given by [10]

f
χ
′2
2 (λ)

(x) =
1

2
exp

[
−1

2
(x + λ)

]
I0

(√
λx

)
, x ≥ 0, (19)

where I0(u) is the modified Bessel function of the first kind and
zero-th order [10].

The above distributions can be employed to set the Rao test
threshold for a given probability of false alarm, as well as to compute
the detection and false alarm probabilities, etc. For a given threshold,
the probability of false alarm is given by

Pf =

∫ ∞

γRao

fχ2
2
(x)dx = exp

(
−1

2
γRao

)
, (20)

which can easily be inverted to find the test threshold γRao for a given
Pf. In addition, the probability of detection is given by

Pd =

∫ ∞

γRao

1

2
exp

[
−1

2
(x + λ)

]
I0

(√
λx

)
dx (21)

for a given test threshold γRao.
Remark 3: The asymptotic distribution under H0 is independent

of the unknown parameters. The probability of false alarm in (20)
depends only on the test threshold, which is a design parameter. It is
evident that the Rao/PAMF test asymptotically achieves CFAR.

V. NUMERICAL RESULTS

In the following, we present our numerical results of the parametric
Rao/PAMF detector obtained by computer simulation and by the
above asymptotic analysis. In addition, the performance of the MF
and AMF detectors, which can be computed analytically, is included
for comparison. The SINR is defined as

SINR = |α|2sHR−1s, (22)

where R is the JN × JN joint space-time covariance matrix of the
disturbance d.

First, we consider the asymptotic distribution of the parametric
Rao/PAMF test statistic obtained in Section IV-B. Figure 1 depicts
the quantile-quantile (QQ) plot of the Rao/PAMF test statistic under
both hypotheses against the corresponding asymptotic distribution
when J = 4, N = 32, and K = 8, a case with limited training.
It is seen that even with a relatively small data size, the asymptotic
distribution matches well the sample test statistics, with only some
minor deviation at the tail portion.
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Fig. 2. The probability of detection Pd versus the input SINR when Pf =
0.01, J = 4, N = 32, and K = 256.

Figures 2 and 3 depict the probability of detection Pd versus
SINR for the MF, AMF, and the parametric Rao/PAMF detectors. In
particular, Figure 2 corresponds to the case with adequate training,
for which the Reed-Brennan rule [4] is satisfied, whereas Figure 3
corresponds to the case with limited training. An examination of
these figures reveals that the asymptotic analysis, in general, provides
a quite accurate prediction of the performance of the parametric
Rao/PAMF detectors. Even for the case with K = 8 and N = 16, the
gap is about 0.5 dB, as shown in Figure 3. Moreover, we can see that
the parametric Rao/PAMF detector is very close to the optimum MF
detector; the parametric Rao/PAMF detector outperforms the AMF
detector by 2 to 3 dB when the Reed-Brennan rule is marginally
satisfied which agrees with earlier observations made in [8].

So far we have assumed that the model order P of the multichannel
AR process is known (cf. Assumption AS4). In practice various
model selection techniques can be used to estimate P . It is not un-
usual for these techniques to under- or over-estimate the model order
by a small number (relative to the true model order P ) [11]. Hence,
it would be of interest to find out how the parametric Rao/PAMF
detector performs when an inaccurate model order estimate is used.
Figure 4 depicts the performance of the Rao/PAMF detector with
true, under-estimated, and over-estimated model order. It shows that
using an inaccurate model order estimate degrades the detection
performance, but the degradation is not significant.

VI. CONCLUSIONS

We have developed a parametric Rao test for the multichannel
adaptive signal detection problem by exploiting a multichannel AR
model. The parametric Rao/PAMF test has been shown to be an
asymptotic parametric GLRT. The asymptotic analysis of the test
statistic shows that the Rao/PAMF test asymptotically achieves
CFAR. Moreover, we can set the test threshold for a given Pf

by utilizing the PDF’s (closed form) in Section IV-B instead of
computer simulations. Finally, our asymptotic analysis has been
shown to provide fairly accurate prediction of the performance of
the parametric Rao/PAMF test.
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