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ABSTRACT

We consider the problem of distributed detection over a multi-
access channel. Assuming a random number of sensors trans-
mitting their observations using Type Based Multiple Access, we
derive the detection performance using Large Deviations Princi-
ple as the mean number of sensors goes to infinity. We charac-
terize the performance in terms of error exponents. We provide
comparison with the case when the number of sensors is deter-
ministic. We generalize this scheme to multiple collections, pro-
pose a Minimum Sum-Rate detector and characterize its error
exponents.

1. INTRODUCTION
In the classical setting of distributed detection, sensors in the field
sense certain physical phenomenon and transmit their observations
to a fusion center, which makes decisions on the underlying phe-
nomenon, with the transmissions assumed to be perfect. However,
for large wireless networks this assumption is not valid. Moreover,
bandwidth has to be allocated to sensors; transmissions must be
made energy-efficient. Therefore, Medium Access Control becomes
a crucial component. To this end, well-known deterministic schedul-
ing schemes such as Time-Division Multiple Access (TDMA) may
not be appropriate.

It is thus desirable to consider distributed scheduling techniques
that facilitate the effective delivery of information from a random
number of sensors to the fusion center. We couple the so-called
Type-Based Multiple Access (TBMA) [1, 2] with a simple random
access analogous to the ALOHA protocol. Referred to as Type-
Based Random Access (TBRA), sensors transmit probabilistically
using a set of orthogonal waveforms keyed to their measurement.

1.1. Related Work
The problem of classical distributed detection has been dealt in con-
siderable detail [3]. Detection on wireless sensor networks [4, 5] as-
sumed orthogonal schemes like TDMA, FDMA or CDMA. TBMA
was proposed as a multi-access scheme by Mergen and Tong [6] and
by Liu and Sayeed [2], independently.

In [6, 7, 2], it has been shown that, in the presence of condition-
ally i.i.d. data and identical channel gains, the asymptotic perfor-
mance of TBMA is same as the case when fusion center has direct
access to sensor observations. In [1, 8], an error exponent analysis
of the TBMA scheme with i.i.d. non-zero mean channel gains and
conditionally i.i.d. data was given. It was shown that the error prob-
abilities decay exponentially with number of transmitting sensors.
A Minimum Rate detector was proposed, which gives the best error
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Fig. 1. Distributed Detection in Multiaccess, given Ni = n.

exponents for TBMA scheme. However, when channels are zero-
mean fading, the Minimum Rate Detector was shown to give poor
performance. In [9, 10] we present the analysis of TBRA involving
multiple collections with zero mean fading and show the existence
of an optimal activation strategy that maximizes the error exponents.

1.2. Summary of Results
We consider two scenarios involving Poisson number of transmit-
ting sensors N : (a) Fusion Center has access to the realization of N .
(b) Fusion Center does not know the realization of N . For both the
cases, we prove that the normalized matched filter output at fusion
center satisfies Large Deviations Principle as the mean number of
sensors goes to infinity. We derive expressions for the rate functions
in both the cases. We study the performance of Minimum Rate De-
tector in our setup and prove its asymptotic optimality in terms of
error exponents. We give comparisons with the case when number
of sensors is deterministic and demonstrate it with numerical exam-
ples. We also address issues such as scalability and computational
requirement at the fusion center. We give a generalization of our
scheme to multiple collections. We suggest a Minimum Sum-Rate
detector and characterize its error exponents. Given the constraint
of total expected transmissions, we analyze whether single or multi-
ple collections is advantageous. When mean number of sensors per
collection is large, there is no difference in performance.

2. SYSTEM MODEL
Sensor Observations and Hypothesis: In the ith data collection, a
sensor involved in the transmission1, say sensor j, has measurement
Xi,j ∈ {1, · · · , k} quantized to k levels. We assume that Xij are
conditionally i.i.d across time and sensors with PMF pθ i.e.,

Xi,j
i.i.d.∼ pθ = (pθ(1), · · · , pθ(k)), θ ∈ {θ0, θ1}.

We consider Simple Binary Hypothesis Hi s.t,

H0 : θ = θ0 vs. H1 : θ = θ1.

1Without loss of generality, we will only consider those sensors involved
in the transmission.

IV  1097142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



TBRA: In the ith collection, node j may transmit probabilistically
(possibly by flipping a coin). When it decides to transmit, it en-
codes Xi,j to a certain waveform and transmits it over a multiaccess
fading channel. As in TBMA, a set of k orthonormal waveforms
{φi(t), i = 1, · · · , k} are used, each corresponding to a specific
data value. Specifically, given energy constraint E per sensor trans-
mission, the signal transmitted by sensor j in collection i is given
by,

Si,j(t) =
√

EφXi,j (t).

Channel Characteristics: We assume that the channels between
the sensors and fusion center are flat fading with i.i.d non zero-mean
channel gains2 Hi,j ∈ R with mean µH . Noise Wi(t) is AWGN
process with p.s.d σ2. If Ni is the random number of sensors trans-
mitting at collection i, the fusion center receives waveform,

Yi(t) =

Ni�
j=1

Hi,jSXi,j (t) + Wi(t). (1)

Matched Filter Output: The matched filter output Yi is the inner
product between the received signal Yi(t) and the orthogonal wave-
forms φ1(t), . . ., φk(t). Let e1, · · · , ek be standard basis vectors

and Wi
iid∼ N (0, σ2

E
I). Then,

Yi
∆
=

1√
E

��
Yi(·), φ1(·)

�
, · · · ,

�
Yi(·), φk(·)�

�
.

=

Ni�
j=1

Hi,jeXi,j + Wi. (2)

Poisson Number of sensors: We model the number of sensors
involved in each transmission Ni as i.i.d Poisson with mean λ. There
are several reasons to consider random access. The sensors may use
a simple probabilistic wake-up strategy in which a sensor decides
to participate in transmission based on a simple coin-flip. Another
possibility is that the fusion center is a mobile access point, and it
travels to different regions to collect data.

Error Exponents: For a given decision rule at the fusion center, let
α � P{H0 → H1} and β � P{H1 → H0} denote the Type-I/II
error probabilities. Let η1 and η2 denote the error exponents.3

η1 = − lim
λ→∞

1

λ
log α, η2 = − lim

λ→∞

1

λ
log β. (3)

Using the “worst exponent wins” rule, the exponent of error proba-
bility under Bayesian setting is given by min(η1, η2).

Decision Statistic and Type: In Information Theory, type or em-
pirical distribution of a sequence is the relative proportion of occur-
rences of each symbol from a finite alphabet [11]. In the TBMA
setup with fixed number of sensors i.e., Ni ≡ λ, when noise and
fading are absent (Hi,j ≡ 1 and σ ≡ 0),

Yi

λ
=

1

λ

λ�
j=1

eXi,j . (4)

The normalized matched filter output is the scaled histogram or type
of sensor observation. Hence we have the name Type Based Multiple
Access.

2The results of this paper can be generalized to complex-valued channel
gains with minor changes.

3Throughout the paper, the notation log refers to natural logarithm.

3. MINIMUM RATE DETECTOR
We shall focus in this section and next section, on the single collec-
tion model. For ease of notation, we drop the time index i in (2).

Y =

N�
j=1

HjeXj + W. (5)

In this section, we recap results involving fixed number of sensors
i.e., N ≡ λ. We know that the optimal detector at fusion center
has the form of a Likelihood Ratio detector. However, the computa-
tion of likelihood function for the normalized matched filter output is
generally intractable for TBRA setup. Instead we study the asymp-
totic nature of random vector Y in (5), using Large Deviations Prin-
ciple (LDP). LDP characterizes the probability of large excursions of
Y from its “mean” behavior by quantifying the so-called rate func-
tion I(·) [12]. In essence for Y satisfying LDP,4

Pr{Y ∈ Bε(y)} = e
−λ(I(y)+O(ε))+o(λ) .

= e
−λI(y)

. (6)

where y ∈ R
k and Bε(y) is a open ball in R

k centered at y with
radius ε > 0. Note that O(ε) → 0 as ε→0 and o(λ)

λ
→ 0 as λ → ∞.

In other words for large λ, the probability that Y turns out to be
in the close vicinity of y behaves as e−λI(y). Let the rate function
of Y under hypothesis Hi be Ii(·). Then the decision regions of
Minimum Rate Detector are given by,

Γ0 = {y ∈ R
k : I0(y) ≤ I1(y)}, Γ1 = R

k \ Γ0. (7)

Thus the Minimum Rate Detector decides that H0 is true if the
asymptotic likelihood under H0 is higher i.e., e−λI0(y) ≥ e−λI1(y).

Theorem 1 [1, 8] For fixed number of sensors λ, the normalized
matched filter output Y

λ
satisfies LDP as λ → ∞ with rate functions

Ii(·), under hypothesis Hi.
Then the Minimum Rate Detector maximizes min(η1, η2) amongst

all detectors based on Y

λ
and thus achieves the best exponent of er-

ror probability in the Bayesian setting for TBMA scheme. Its error
exponents are given by,

η1 = inf
x∈Γ1

I0(x), η2 = inf
x∈Γ0

I1(x). (8)

4. SINGLE COLLECTION

Consider the following cases with Poisson number of sensors.

1. Fusion Center has access to the realization N = n.

2. Fusion Center does not know the realization N = n.

From Theorem 1, Minimum Rate Detector gives optimal error
exponents when LDP holds. Thus the key issue is establishing LDP
for the above two cases as the mean number of sensors goes to infin-
ity. We also need to characterize their respective rate functions.

4.1. N is Random and Known

This is a reasonable assumption if the fusion center can get a good
estimate of N (eg : identical channels and low noise variance). This
scenario is intermediate between deterministic and random & un-
known N . By studying this case, we can characterize the usefulness
of knowing the realization of N . We first prove that LDP holds and
give expressions for rate functions.

4“
.

=” is used in the same sense as in (6) throughout the paper
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Theorem 2 (Characterization of Rate Function) : Y

N
satisfies Large

Deviations Principle for integral λ and λ → ∞, with rate function
Irk

i (·) under hypothesis Hi,

I
rk
i (y) = 1 − e

−Id
i (y)

.

where, Id
i (·) is the rate function for deterministic number of sensors,

I
d
i (y) = sup

t

�〈y, t〉 − log φi(t)
�
. (9)

where φi(t) = Eθi

�
e〈t,H1eX1

〉
�

is the moment generating function
of a single “faded” observation.

Proof: We use the fact that, we have LDP w.r.t n, given N = n, with
rate function Id

i (·) i.e,

P

�
Y

N
∈ Bε(y)

���N = n; θi

�
.
= e

−nId
i (y)

.

We marginalize w.r.t N to obtain the likelihood function of Y
N

. Using
Stirling’s formula and the principle of logarithmic equivalence [13],
we obtain the rate function. �

Given N = n, the Minimum Rate Detector makes a decision
based on Y

n
using the deterministic rate function Id

i (·). Therefore
the decision regions are the same as in deterministic case of n sen-
sors. But to compute the error probabilities, we need to marginalize
w.r.t N . We obtain the error exponents by substituting Irk(·) in (8).

Since we can compute Y

n
, TBRA delivers type of sensor obser-

vations in the absence of fading and noise, as in the deterministic
case. However, we see that the the rates of decay of likelihood func-
tions and error probabilities are slower than in the deterministic case
i.e., Irk(·) ≤ Id(·) and ηrk ≤ ηd. Intuitively this is because of ran-
domization in N which implies that for a given λ, every realization
of N is not guaranteed to be large.
4.2. N is Random and Unknown
This scenario is easy to implement in practice. However, now the
decision statistic is Y

λ
instead of Y

n
. Thus even in the absence of

noise and fading, TBRA does not deliver type of sensor observations.
Intuitively we expect some performance degradation. However, we
show that this degradation is only in the rate function and LDP still
holds as λ → ∞.

Theorem 3 (Characterization of Rate Function) : Y

λ
satisfies Large

Deviations Principle for integral λ and λ → ∞, with rate function
Iru

i (·) under hypothesis Hi,
I

ru
i (y) = sup

t∈Rk

�
〈y, t〉 − φi(t)

�
+ 1 (10)

where, φi(t) = Eθi

�
e〈t,H1eX1

〉
�
.

Proof: We compute the asymptotic log-moment generating function
of Y

λ
and apply the Gärtner-Ellis Theorem [12]. �

Computation of the Rate Function
The rate functions are unconstrained concave optimization prob-

lems in k-dimensions. They may not have closed form expressions,
but can be evaluated numerically. This is much simpler than evalu-
ating the actual likelihood function. We see that for random and un-
known case, the optimization problem is separable as the rate func-
tion can be written as,

I
ru
i (y) = sup

t

k�
j=1

�
yjtj − pθi

(j)φH(tj)
�

+ 1.

where φH(·) is the MGF of fading distribution. Since the opti-
mization is unconstrained, it can be reduced to k independent 1-
dimensional optimizations. This is much simpler to compute than
for the deterministic case, which is non-separable.

5. PERFORMANCE ANALYSIS

For different cases of N , the error exponents can be obtained by
substituting their rate functions in (8). We give the expressions for
rate functions in the table below.

Nature of N Rate Function
Deterministic Id

i (y) = supt

�
〈y, t〉 − log φi(t)

�

Random & Known Irk
i (y) = 1 − e−Id

i (y)

Random & Unknown Iru
i (y) = supt

�
〈y, t〉 − φi(t) + 1

�

We note that since σ2 is not present in the rate functions, noise
does not affect the error exponents. This is because the large devi-
ation probability of the normalized noise term, W̃ ∼ N (0, σ2

En2 I)
decays super-exponentially in all the above cases.

Minimum Rate Detector is asymptotically optimal and gives the
best error exponents for the TBRA scheme. This is because we have
Large Deviations in all the above cases and assume the rate functions
to be I-continuous in the interior of their domains.

Scalability : Consider the practical scenario of sensor duty-cycle.
To increase λ we just need to increase the wake-up probability of
sensors. Moreover on increasing λ, the energy distribution (battery
power) is uniform among sensors, on the average. This is in con-
trast to the deterministic case, where to improve performance, new
sensors have to be deployed in the field and the resulting energy dis-
tribution among the sensors is non-uniform.

Numerical Example : On-Off Channel
The channel gains are Hi ∼ Bernoulli {0, 1} with mean µH .

The rate functions can be evaluated in closed form. From (Fig.2a),
I

ru
i (y) ≤ I

rk
i (y) ≤ I

d
i (y), ∴ η

ru ≤ η
rk ≤ η

d
.

The Type I/II error exponents are also evaluated in closed form
and are attained on the boundary of Minimum Rate Detector. Ad-
ditionally, we find that the error exponents for known and unknown
N are equal i.e., ηrk = ηru. We give simulation results in Fig.2b
and Fig.2c. In Fig.2b, the Large Deviations (LD) estimate refers to
e−λη. Since we neglect the eo(λ) term, it is not accurate for small λ.
There is a performance gap between the random and deterministic
N at large λ as predicted. The curves for the known and unknown
random N lie on each other. This agrees with the result ηrk = ηru.
Thus asymptotically there is no performance gain in knowing the
realization of N for on-off channels. In Fig.2c as λ grows, the ex-
ponent in the simulations approaches the theoretical exponent. Thus
the rate of decay of error probability agrees with theory for all cases.

6. MULTIPLE COLLECTIONS
Single collection scenario assumes that we can increase λ to any
value to get the required performance. But there might be practi-
cal constraints in increasing λ, such as synchronization. Moreover
increasing λ beyond a point results in more transmissions on the av-
erage. In a constrained area, this makes the fading gains correlated,
thereby contradicting the i.i.d assumption. Thus we need to consider
the general case where the fusion center collects more than one sam-
ple. We assume λ to be in LD regime. i.e., λ is large enough for the
LD Estimate to be close to the actual error probability.

Let l be the number of collections. On the lines of Minimum
Rate Detector, we define Minimum Sum-Rate Detector (θ̂msd) by De-
cision Regions,
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Simulation Values : µH = 0.5, pθ0
= [0.8, 0.2], pθ1

= [0.2, 0.8], σ2 = 0.1.

Γ0 =
�
�

l�
j=1

�
I0(yj) − I1(yj)

�
≤ 0
�
�, Γ1 = R

km \ Γ0.

We can show that the Minimum Sum-Rate Detector gives optimal
error exponents for l-collections in TBRA scheme. We express the
error exponent for multiple collections, in terms of error exponent of
a single collection, in the lemma below.

Lemma 1 Assume that the rate functions are continuous in the in-
terior of their domain. Let ηs and ηm(l) be the error exponents for
a single collection and l collections respectively. Then,

ηm(l) = lηs. (11)

If the fusion center collects data using TBRA for l slots, the
total average number of transmissions is ρ = λl, which is also pro-
portional to energy consumption. Fixing ρ, there is a spatio-temporal
tradeoff between the average number of transmission per slot and the
total number of slots in the data collection. For ρ in LD regime, we
address this issue below.
1. If ρ

l
is also in LD regime : No difference in performance since the

exponents are equal.

2. If ρ

l
is not in LD regime : There maybe performance degradation

with l collections. This is because the eo( ρ
l
) term is not small enough

to be ignored and therefore the optimality of Minimum Sum-Rate
detector for l-collections is not guaranteed.

7. CONCLUSIONS
In this paper we introduced TBRA, a random access protocol cou-
pled with TBMA. This scheme has several attractive features. It is
easy to deploy in practice. The access point does not need to monitor
the state of sensors in the field. The bandwidth requirement is pro-
portional to the number of local quantization levels of sensors, not to
the number of sensors. It is easily scalable in λ. The rate functions
are easier to evaluate and thus the decision rule at the fusion cen-
ter requires less computational processing. However, we show that
there is some performance degradation in terms of the rate of decay
of error probability compared to having fixed number of sensors.

When there is a constraint in increasing the mean number of sen-
sors per collection, we gave a scheme with multiple data collections

and showed linear improvement in the error exponents with collec-
tion size. In contrast to this fixed sample size scheme, we propose to
search for sequential schemes where certain criteria have to be met
and the size of the collection is a random variable.

The results in the paper depend crucially on the non-zero mean
fading assumption. When channels are zero-mean fading, the Min-
imum Rate Detector gives poor performance. In [9, 10] we present
an analysis of TBRA involving multiple collections with zero mean
fading and show the existence of an optimal activation strategy (op-
timal λ) that maximizes the error exponents.
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