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ABSTRACT

Blind source separation algorithms typically require that the

number of sources are known in advance. However, it is of-

ten the case that the number of sources change over time and

that the total number is not known. Existing source separa-

tion techniques require source number estimation methods to

determine how many sources are active within the mixture

signals. These methods typically operate on the covariance

matrix of mixture recordings and require fewer active sources

than mixtures. When sources do not overlap in the time-

frequency domain, more sources than mixtures may be de-

tected and then separated. However, separating more sources

than mixtures when sources overlap in time and frequency

poses a particularly difficult problem. This paper addresses

the issue of source detection when more sources than sensors

overlap in time and frequency. We show that repetitive struc-

ture in the form of time-time correlation matrices can reveal

when each source is active.

1. INTRODUCTION

Blind source separation is the problem of separating a num-

ber of source signals (e.g. musical instruments) from a set of

mixture signals (e.g. a song). For example, stereo music pro-

vides any number of sources within a two channel recording.

Often, the case that the number of instruments playing at once

exceeds the number of mixtures. We represent this scenario

via an instantaneous linear mixing model:

x(t) = As(t), (1)

where x = [x1(t), · · · , xM (t)]T is a time varying vector rep-

resenting the mixtures, xi(t), s = [s1(t), · · · , sN (t)]T rep-

resents the sources, si(t), and A is the M × N real mixing

matrix. The ith column of A defines the mixing parameters

for source si (i.e., its spatial position).

A class of algorithms that addresses blind source separa-

tion is independent component analysis [1]. However, assum-

ing that the sources are independent is not enough; additional

source structure is required. The classic information theoretic

example of source structure is a non-Gaussian probability dis-

tribution [1]. However, temporal structure can enhance the

separation of time-varying signals. For example, sources of-

ten have smoothly changing variance (i.e., non-stationarity)

or are correlated at time-lags (i.e., autocorrelated) [1]. We

are investigating a new type of temporal structure that has not

been addressed in the literature: repetitive structure.

Source signals that change over time and are highly cor-

related at different points in time exhibit repetitive structure.

For example, music contains repeated notes, melodies, and

sections. While musical repetition is carefully constructed

and often periodic, other source signals repeat in less pre-

dictable ways. For example, the sound of a bell ringing or

a door closing depends on external factors, but is highly cor-

related every time it sounds. We believe that many interesting

source signals contain repetitive structure that can be lever-

aged in various signal processing applications.

2. RELATED WORK

Although the ultimate goal is to separate source signals from

the mixture signals, the vast majority of blind source separa-

tion algorithms require that the number of sources is known in

advance and that N ≤ M . The problem is more complicated

when the number of active sources changes over time. There-

fore, most source separation algorithms require source num-

ber estimation, or more generally source detection, before

separation can begin. Generally, source number estimation

is performed on a correlation matrix computed on the mix-

tures [2, 3, 4]. Estimating the number of sources from a cor-

relation matrix requires that the number of sources is strictly

less than the number of mixtures. Other techniques estimate

the source signals and the source number concurrently [5, 6].

However, all of these techniques require N ≤ M , whereas we

consider the case of more sources than mixtures (N > M ).

When the time-frequency representations of the sources

do not overlap, more sources than mixtures can be detected

and separated [7, 8]. The correlation matrix at a time-frequen-

cy point containing only one active source reveals the source’s

spatial position in the mixture. The number of unique posi-

tions indicates the number of sources. However, if sources

overlap in time and frequency it becomes difficult to deter-

mine which sources are active even if the source positions are

known [9]. Our approach uses repetitive structure and known
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source positions to estimated which sources are active at each

point in time.

Recently, repetitive structure has been used for segmen-

tation [10], summarization [11], and compression [12] of au-

dio signals. Foote visualizes repetitive structure in audio and

video in a two-dimensional self-similarity matrix [13]. By

comparing every pair of short audio frames, the self-similarity

matrix captures multiple levels of repetitive structure. Repet-

itive structure has recently been used for blind source sep-

aration [14] when the number of sources, N , is not greater

than the number of mixtures, M . Here, we show its utility for

source detection when N > M .

3. REPRESENTATION

Temporal structure is often captured by correlation matrices.

Local correlation matrices computed within short time frames

capture the non-stationarity of the sources. Global covariance

matrices computed at time-lags capture the autocorrelation of

the sources. We combine parts of each approach to form cor-

relation matrices between short time-frames at different time-

lags. Analyzing different time frames within a signal leads

to a time-time representation analogous to the self-similarity

matrix mentioned above. The only difference is that a time-

time representation contains a correlation matrix for every

pair of frames instead of a scalar similarity value. The spe-

cific time-time representation that we use is derived from the

pseudo Wigner distribution [14]:

Dxx(t1, t2) =
∫

h(τ)x(t1 +
τ

2
)xH(t2 − τ

2
) dτ , (2)

where h is a localization window. We evaluate Dxx at equal-

ly spaced points in time, thereby correlating every windowed

frame with every time-reversed windowed frame. When t1 =
t2, the representation mimics the local correlation matrices

that capture non-stationarity, except that one frame is time-

reversed. The time-reversal enhances temporal precision at

the cost of time-lag precision.

We relate the time-time representation of the mixtures to

the time-time representation of the sources:

Dxx = ADssAH (3)

where H is the Hermitian transpose. By applying a whitening

matrix W we have

z(t) = WAs(t) (4)

Dzz = WADssAHWH (5)

= UDssUH (6)

where U = WA is an M × N pseudounitary matrix (i.e.,
U# = UH where # is the Moore-Penrose pseudoinverse).

4. SOURCE DETECTION

The time-time representation of the sources, Dss, contains all

the information required for source detection. If Dss(t1, t2)ij

is nonzero, source i is active at t1 and source j is active at

t2. However, because N > M , we cannot simply invert U to

find Dss. Instead, we must isolate time pairs that reveal parts

of Dss. For example, if source i is the only source active at t1
and t2, Dzz(t1, t2) = Dss(t1, t2)iiuiuH

i , where ui is the ith
column of U representing the whitened mixing parameters of

source i. In this case, ui can be estimated up to a scale factor

by the eigenvector of Dzz(t1, t2), thus detecting source i at t1
and t2. This is a special case because Dzz(t1, t2) happens to

be rank-one and symmetric. In the general case, Dzz(t1, t2)
is a linear combination of the product of all pairs of whitened

mixing parameters:

Dzz(t1, t2) =
∑
ij

Dss(t1, t2)ijuiuH
j (7)

Although reconstructing Dss from Dzz is generally not pos-

sible, we can hope to estimate one element of Dss(t1, t2),
revealing one source active at t1 and one source active at

t2. If one element of Dss(t1, t2) dominates the rest (i.e.,
|Dss(t1, t2)qr| � |Dss(t1, t2)ij | ∀ i �= q or j �= r), we can

approximate Dzz(t1, t2):

Dzz(t1, t2) ≈ Dss(t1, t2)qruquH
r (8)

Using singular value decomposition, we can compute a rank-

one approximation of Dzz(t1, t2):

Dzz(t1, t2) ≈ dv1vH
2 (9)

where ‖v1‖ = ‖v2‖ = 1 and d is the largest singular value of

Dzz(t1, t2). Source k̂ is likely to be active at t1, if its mixing

parameters, uk̂ are the closest to v1:

k̂ = arg max
k

vH
1 uk

‖uk‖ (10)

We collect this evidence in a two-dimensional function cn for

each source n:

cn(t1, t2) =
{

d, n = k̂
0, otherwise

(11)

Because Dzz(t1, t2) = Dzz(t2, t1)H , we need only con-

sider the upper or lower triangular elements of Dzz to com-

pletely fill in cn. The function cn(t1, t2) contains the evidence

that source n is active at time t1 given Dzz(t1, t2). To ag-

gregate this information we construct the activation function

gn(t):

gn(t) =
∫

cn(t, τ) dτ (12)

Applying a threshold classifier to a smoothed version of this

function would then provide the source activations.

We explore the following algorithm for source detection:
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Time 0 1 2 3 4 5 6 7

Source 1 x x x x

Source 2 x x x x

Source 3 x x x x

Fig. 1. Activation sequence of sources.

1. Compute the whitened time-time representation of the

mixture signals from Equation 2.

2. For each t1 and t2

(a) Compute the rank-one approximation according

to Equation 9.

(b) Classify the resulting singular vectors according

to Equation 10 to find the source k1 associated

with t1.

(c) Assign cn(t1, t2) to the largest singular value of

Dzz(t1, t2), d.

3. Construct the activation function, gn according to Equa-

tion 12.

5. RESULTS

To demonstrate our algorithm, we analyze a two channel mix-

ture of three sources with overlapping frequency content. The

sources are drawn from a Gaussian distribution with zero

mean and unit variance and then filtered by a conjugate pair

filter. Sources 1, 2, and 3 were filtered using normalized cen-

ter frequencies of 0.20, 0.25, and 0.30, respectively. Figure 2

shows the frequency content of each of the sources. The dis-

tributions show considerable overlap in frequency. We con-

struct the repetitive structure by activating each source in a

different pattern, shown in Figure 1. Each activation from the

same source is randomly generated using the same distribu-

tion and filter. Thus, the repetitions are not identical, only

highly correlated.

We generate the mixtures, x(t), via Equation 1 using the

following mixing matrix:

A =
[

0.4403 0.5499 0.9068
−0.8978 0.8352 0.4215

]
(13)

We compute the time-time representation of the whitened

mixtures using Equation 2 and fill in the collection function,

cn for each source. Figure 3 shows the collection function

for source 1. Each row, t1, contains the evidence for source

1 being active at time index t1. The darker squares indicate

that Dzz(t1, t2) provides more evidence for source 1 activity

when source 1 is present at both t1 and t2. Figure 4 shows

the activation function for each of the sources. As expected,

when one source is active, only the correct source receives

evidence of activation. For example, only source 3 is active

from 3-4 seconds in Figure 4. When two sources are active,
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Fig. 2. Normalized frequency of the sources.

they sometimes combine to approximate the remaining inac-

tive source. For example some activation energy is shown for

source 1 between 5-6 seconds, source 2 between 4-5 seconds,

and source 3 between 2-3 seconds. When all three sources are

active, the activation function is high for all three sources.

6. CONCLUSION

We investigate the use of repetitive structure for source detec-

tion. The time-time representation captures information about

source activation, and provides a means to retrieve it blindly

from the mixtures. This method of analysis applies to the sit-

uation of more sources than mixtures.
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