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ABSTRACT

A new spatial-vector smoothing algorithm for multiple co-
herent sources is proposed based on the measurement model
of 3-D cylindrical array with multi vector-hydrophones, which
is located on or near a reflecting boundary. And the perfor-
mance of the proposed algorithm is examined in two practical
applications: hull-mounted and seabed array. The advantages
of the spatial-vector smoothing scheme are: (1) less reduc-
tion in the overall array’s spatial aperture, (2) no limit to the
maximum number of coherent sources.

1. INTRODUCTION

A vector-hydrophone consists of either two or three identical
but orthogonally oriented velocity hydrophones plus a pres-
sure hydrophone, all of which are spatially co-located in a
point-like geometry. The four-component vector-hydrophone
produces the following 4 × 1 array manifold with regard to
the k-th source impinging from elevation angle 0 ≤ θk < π
(measured from the vertical z-axis) and azimuth angle 0 ≤
φk < 2π [1]:

H(θk, φk) def=

⎡
⎢⎢⎣

u(θk, φk)
v(θk, φk)
w(θk)

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

sin θk cos φk

sin θk sin φk

cos θk

1

⎤
⎥⎥⎦ (1)

In many practical applications, an array of vector-hydrophones
is located on or near a reflecting boundary. For example, a
cylindrical array with vector hydrophones is mounted on an
submarine hulls [2]; or it is mounted on the sea bed in shal-
low water. The measurement model of array with multiple
vector-sensors for single source, where all vector-sensors lie
on a 2-D plane near a reflecting boundary, have been proposed
in [3], and based on this model, the performance to estimate
the DOA of single source is examined. For multiple coherent
sources, however, the restoring rank problem is not consid-
ered in [3].

In order to exploit based-subspace techniques to estimate
the DOA of coherent signals, the preprocessing methods are
first need to restore the rank of covariance matrix of inci-
dent signals. The early preprocessing scheme referred to as

spatial smoothing was proposed in [4],[5],[6]. The spatial
smoothing technique, however, suffer from the reduction of
the effective array aperture due to dividing an array into some
subarray, resulting in lower resolution and accuracy. Another
approach referred to as vector smoothing was proposed in
[7]. But, the disadvantage of vector smoothing technique is
that the maximum number of restoring the rank of covariance
matrix of coherent sources is limited since the component-
number of vector sensor is a constant. For example, the vector
smoothing technique can only restore the rank of covariance
matrix of coherent sources up to 4 for an array with four-
component vector-hydrophones.

In this paper, a new spatial-vector smoothing algorithms
for multiple coherent sources is proposed based on the mea-
surement model of 3-D cylindrical array with multi vector-
hydrophones, which is located on or near a reflecting bound-
ary. And the performance of the proposed algorithm is exam-
ined in two practical applications: hull-mounted and seabed
array. The advantages of the proposed smoothing scheme are:
(1) less reduction in the overall array’s spatial aperture, (2) no
limit to the maximum number of coherent sources.

2. THE MODEL OF A CYLINDRICAL
VECTOR-HYDROPHONE ARRAY

Consider a uniform cylindrical array with L (L = P × M )
vector-hydrophones, P number of circular rings of radius R
all centered around the vertical z-axis and mutually separated
by D vertically. M vector-hydrophones are uniformly placed
on circular at 2π/M adjacent apart. For the (p,m)th vector-
hydrophone located at xm, ym, zp has spatial phase factor

qp,m(θk, φk) = ej2π(xmu(θk,φk)+ymv(θk,φk)+zpw(θk))/λ (2)

where xm = R∗cos(2π(m − 1)/M), ym = R∗sin(2π(m −
1)/M), zp = D(p − 1), ∀ 1 ≤ p ≤ P,∀ 1 ≤ m ≤ M .
The u(θk, φk), v(θk, φk), w(θk) are the kth source direction
cosines, along the x-axis, y-axis and z-axis, respectively. λ
denotes the wavelength of incidence wave. Let

q(p)(θk, φk) =

⎡
⎢⎣

qp,1(θk, φk)
...

qp,M (θk, φk)

⎤
⎥⎦ p = 1, . . . , P (3)
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Assuming the first circular ring of cylindrical array (p =
1) located on the plane z = 0, the boundary lies in the z = −d
plane, and oriented such that its velocity sensors measure the
velocity components parallel to the coordinate axes. K (K <
L) narrowband, far-field underwater acoustic planewave im-
pinge upon the cylindrical array. The 4L× 1 vector measure-
ments z(t) at time t:

z(t) =
K∑

k=1

a(θk, φk)p̃k(t) + n(t) = Ap̃(t) + n(t) (4)

for t = 1, 2, · · · , N , p̃(t) def= [p̃1(t), · · · , p̃K(t)]T is the com-
plex amplitude vector of the incident wave. n(t) is the ad-

ditive noise vector. A def= [a(θ1, φ1), · · · ,a(θK , φK)] is the
direction matrix of cylindrical array. a(θk, φk) is the steering
vector, i.e.

a(θk, φk) =

⎡
⎢⎣

q(1)(θk, φk) ⊗ h(1)(θk, φk)
...

q(P )(θk, φk) ⊗ h(P )(θk, φk)

⎤
⎥⎦ (5)

where ⊗ is the Kronecker product.

h(p)(θk, φk) =

⎡
⎢⎢⎢⎣

(1 + R(θk)e−iϑ
(p)
k )u(θk, φk)

(1 + R(θk)e−iϑ
(p)
k )v(θk, φk)

(1 −R(θk)e−iϑ
(p)
k )w(θk)

(1 + R(θk)e−iϑ
(p)
k )

⎤
⎥⎥⎥⎦ (6)

where ϑ
(p)
k = 4π((p − 1)D + d) sin θk/λ, p = 1, . . . , P ,

R is the (complex) reflection coefficient, which specifies the
attenuation and phase change of the reflected wave. By our
choice of coordinate system, the incident angle γ is just π/2−
θ; therefore, for a given frequency, R is a function of θ but not
φ.

3. THE SPATIAL-VECTOR SMOOTHING(SVS)

Supposing that K narrowband underwater acoustic sources
are coherent, i.e. p̃(t) = [g1, · · · , gK ]T p̃1(t) = gp̃1(t) (gk is
a complex constant), the 4M ×K array manifold A(p) of the
pth circular ring may be partitioned into 4 number of M ×K
subarray manifolds, i.e.

A(p)
j = Q(p)Φ(p)

j , j = 1, . . . , 4 (7)

Q(p) def=
[
q(p)(θ1, φ1), · · · ,q(p)(θK , φK)

]
(8)

where Φ(p)
j is a diagonal matrix, its diagonal elements are

[
Φ(p)

j

]
k,k

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 + R(θk)e−iϑ
(p)
k )u(θk, φk), j = 1

(1 + R(θk)e−iϑ
(p)
k )v(θk, φk), j = 2

(1 −R(θk)e−iϑ
(p)
k )w(θk), j = 3

(1 + R(θk)e−iϑ
(p)
k ), j = 4

(9)

None of them depends on {(xm, ym), m = 1, . . . , M}. And
Q(p) = Q(1)Ψ(p−1), where Ψ(p−1) is a diagonal matrix with
diagonal elements {[Ψ(p−1)]k,k = ei2πD(p−1)w(θk)/λ, k =
1, . . . ,K}.

The sample covariances matrix of outputs of 4 subarrays
are averaged,

R̄(p) =
1
4

4∑
j=1

R(p)
j = Q(p)R̄(p)

p̃ (Q(p))H + R̄(p)
n (10)

R̄(p)
p̃ =

1
4

4∑
j=1

Φ(p)
j Rp̃(Φ

(p)
j )H

=
P1

4

4∑
j=1

Φ(p)
j ggH(Φ(p)

j )H

=
P1

4
(GD(p))(GD(p))H (11)

where P1
def= 1

N

∑N
t=1 p̃1(t)p̃∗1(t), G def= diag{g1, · · · , gK}

is a diagonal matrix.

D(p) =

⎡
⎢⎣

u(θ1, φ1) v(θ1, φ1) w(θ1) 1
...

...
...

...
u(θK , φK) v(θK , φK) w(θK) 1

⎤
⎥⎦

⊙ [
h(p)(θ1, φ1) · · · h(p)(θK , φK)

]T
(12)

where � is indicates the element-wise product. p = 1, . . . , P .
Then, smoothed covariance matrix R̄(p) of P circular ring

are again averaged,

R̄ =
1
P

P∑
p=1

R̄(p) = Q(1)R̄p̃(Q(1))H + R̄n (13)

R̄p̃ =
1
P

P∑
p=1

Ψ(p−1)R̄(p)
p̃ (Ψ(p−1))H

=
P1

4P
(GΘ)(GΘ)H (14)

where

Θ =
[

D(1), Ψ(1)D(2), · · · , Ψ(P−1)D(P )
]

(15)

Since rank{G} = K, rank{R̄p̃} =rank{Θ}. When θi �=
θj , φi �= φj at ∀i �= j, and |R(θi)| �= 0, ϑi + � R(θi) �=
nπ at i = 1, . . . , K (where R(θi) = |R(θi)|e� R(θi), n is
an integer), rank{Θ} = Min{K, 4P} is clearly obtained form
(12) and (15).

It is noted that the SVS is not limited to 3-D cylindrical
array. It may easy extended to other center array (see defin-
ition in [6]) with an ambiguity-free structure. The SVS for
the usual pressure-hydrophone array is a special case of this
algorithm obtained by setting h(p)(θk, φk) = [0, 0, 0, (1 +
R(θk)e−iϑ

(p)
k )]. In the case, vector smoothing will disappear.
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The advantages of SVS are no reduction in the circular ring
subarray’s spatial aperture and no limit to the maximum num-
ber of the coherent sources.

4. THE PERFORMANCE OF SPATIAL-VECTOR
SMOOTHING ALGORITHM

The R is a function of both incident wave’s angle frequency
and incidence angle, and it is highly dependent on the nature
of both half spaces. Several ideal situations of practical appli-
cations will be discussed to examine the performance of the
proposed smoothing algorithm.

4.1. Rigid Boundary

In case of R = 1 for all incidence angles, such a surface is
called a rigid boundary, and is a good approximation to a ves-
sel’s hull at high frequency. Setting R = 1 in (6), rank{Θ}
decreases to Min{K, 3P} at d = 0 and D = λ/2 for all
θi = π/2 and φi �= φj , because the normal velocity compo-
nent is zero. To restore the rank to K (K coherent sources),
P ≥ K/3 is need. Whereas, if d = λ/4 and D = λ/2 for all
θi = π/2 and φi �= φj , rank{Θ} decreases Min{K, P} be-
cause the pressure and in-plane velocity components are zero.
To restore the rank to K, P ≥ K is need for. This is equiva-
lent to a free space pressure-sensor array in rank restore. This
means that 0 < d < λ/4 should be selected to avoid rank
lessen at D = λ/2.

4.2. Pressure-Release Boundary

In case of R = −1 for all incidence angles, Such a surface
is called a pressure − release boundary, and is a approxi-
mation to a vessel’s hull at low frequency. It is also a good
approximation for underwater sound reflected from the inter-
face with the air and is relevant to a floating or towed array
scenario[3]. Setting R = −1 in (6), the situation is the very
reverse of R = 1. If d = λ/4 and D = λ/2 for all θi = π/2
and φi �= φj , rank{Θ} decreases Min{K, 3P}. If d = 0 and
D = λ/2 for all θi = π/2 and φi �= φj , rank{Θ} decreases
Min{K,P}.

4.3. Seabed Model

The interface between sea water and the packed sandy ocean
bottom can be approximately modeled the boundary between
two fluids, one of which is absorptive. The reflection coeffi-
cient is given by [8]

R(γ) =
η cos γ − i(sin2 γ − n2)1/2

η cos γ + i(sin2 γ − n2)1/2
(16)

where γ denotes the incident angle, η is the ratio of sand den-
sity to water density, and n is the index of refraction. The

presence of absorption is expressed by assuming that the in-
dex of refraction is complex, i.e. n = n0(1+iα), with α > 0.
For the sandy ocean bottom typical values are n0 = 0.83,
η = 2.7, α = 0.1 [8]. Note that R does not depend on fre-
quency in (16). Hence, all three components of velocity and
pressure are generally nonzero at the surface. Thus, rank{Θ}
holds Min{K, 4P} for θi �= θj and φi �= φj .

5. NUMERICAL EXAMPLE

Supposing that two equal-power narrowband, coherent sources
with θ1 = 50◦, φ1 = 40◦, g1 = 1, θ2 = 20◦, φ2 = 70◦, g2 =
ejπ/6 impinge upon a cylindrical array with eight vector hy-
drophones, which consists of two 4-element uniformly circu-
lar rings with radius R = λ/(2

√
2) and inter-ring spacing D.

The first circular ring of cylindrical array located on the plane
z = 0, and the boundary lies in the z = −d plane. The SNR
is defined relative to each source. 100 snapshots are used in
each of the 100 independent Monte Carlo trials.

As a overall error measure for the DOA estimation, the
mean-square angular error (MSAE) for single source scenario
is proposed, and a bound MSAEB is derived on the MSAE
in [9]. For K sources scenario, this bound may be expressed
as

MSAEB =
N

K

K∑
k=1

{cos2 θk · CRB(φk) + CRB(θk)} (17)

Fig. 1 shows the performance (
√

MSAEB) of SVS ver-
sus SNR at various d and D for three scenarios. From Fig.1(a),
the

√
MSAEB at d = 0.05 is less than that at d = 0.15 for

D = λ/2. The reason is that the normal velocity component
is zero but the pressure and in-plane velocity components are
double their values in free-space if d = 0 and D = λ/2 for all
θi = π/2. Whereas, the normal velocity component is double
their values in free-space but the pressure and in-plane veloc-
ity components are zero if d = λ/4 and D = λ/2 for all
θi = π/2. This situation results in the low signal problem.
Thus, the d should be selected as close to 0. From Fig.1(b),
the

√
MSAEB at d = 0.15 is less than that at d = 0.05 for

D = λ/2. The reason is that the normal velocity component
is double their values in free-space but the pressure and in-
plane velocity components are zero at d = 0 and D = λ/2
for all θi = π/2. Whereas, the normal velocity component
is zero but the pressure and in-plane velocity components are
double their values in free-space if d = λ/4 and D = λ/2
for all θi = π/2. Thus, the d should be selected as close to
λ/4, but the large d will increase the vessel’s profile, which is
undesirable. From Fig.1(c), the

√
MSAEB at d = 0 is less

than that at d = 0.25 for D = λ/2. This is similar to result
in rigid boundary. Since the overall array’s spatial aperture at
D = λ/2 is larger than that at D = λ/4, the

√
MSAEB at

D = λ/2 is clearly less than that at D = λ/4 in three scenar-
ios. When D = λ/4, however, the greater the d, the smaller
the

√
MSAEB will be in three scenarios.
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6. CONCLUSION

In this paper, a new spatial-vector smoothing algorithms for
multiple coherent sources is proposed based on the mea-
surement model of 3-D cylindrical array with multi vector-
hydrophones, which is located on or near a reflecting bound-
ary. By summing the spatial covariance matrices from each
”type” of component hydrophone, the rank up to 4 is restored
without reduction of the array’s geometric aperture, then by
summing the spatial covariance matrices from each ”ring” of
cylindrical array, the rank up to 4P is restored. The perfor-
mance of the proposed algorithm is examined in two prac-
tical applications: hull-mounted and seabed scenario. The
0 < d < λ/4 and D = λ/2 should be selected to avoid rank
lessen and increase estimating accuracy.
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Fig. 1. Performance (
√

MSAEB) of SVS versus SNR:
two equal-power narrowband, coherent sources with θ1 =
50◦, φ1 = 40◦, g1 = 1, θ2 = 20◦, φ2 = 70◦, g2 = ejπ/6 im-
pinge upon a cylindrical array with eight vector-hydrophones
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