
UNDERWATER NOISE MODELING AND DIRECTION-FINDING BASED ON
CONDITIONAL HETEROSCEDASTIC TIME SERIES

Hadi Amiri 1,3, Hamidreza Amindavar 1, Mahmoud Kamarei 2

1Amirkabir University of Technology, Department of Electrical Engineering,
2University of Tehran, Department of Electrical and Computer Engineering,

3Engineering Research Institute, Ministry of J-Agriculture, Tehran, Iran.
hdamiri@aut.ac.ir, hamidami@aut.ac.ir, kamarei@ut.ac.ir

ABSTRACT

In this paper, we propose a new method for practical non-
Gaussian and non-stationary underwater ambient noise mod-
eling and direction-finding approach. In this application, mea-
surement of ambient noise in natural environment shows that
noise can sometimes be significantly non-Gaussian and time-
varying features such as variances. Therefore, signal process-
ing algorithms such as direction-finding that are optimized
for Gaussian noise, may degrade significantly in this environ-
ment. Generalized Autoregressive Conditional Heteroscedas-
ticity(GARCH) models are feasible for heavy tailed PDFs and
time-varying variances of stochastic process and also has flex-
ible forms. We use a more realistic GARCH(1,1) based noise
model in the Maximum Likelihood Approach for the estima-
tion of Direction-Of-Arrivals (DOAs) of impinging sources
and show using experimental data that this model is suitable
for the additive noise in an underwater environment.

1. INTRODUCTION
A passive SONAR generally employs array processing tech-
niques to resolve problems such as localization of targets[1,
2]. In this way, additive noise model has an important role
for these methods. As a matter of fact, all of them such
as direction-finding utilize assumptions for noise model, that
have very essential part in these methods. In the underwater
environment, the measurements of ambient noise shows that
we have non-Gaussian process[3, 4]. Natural and man-made
sources such as reverberation and industrial noise that cause
ambient noise distribution exhibit performances far away from
the Gaussian model. These factors are more in coastal and
shallow waters. Thus, the algorithms that are optimized for
Gaussian distribution will degrade in actual experiments. All
this mentioned factors give a stochastic and time-varying na-
ture to the additive noise. Thus, a proper model presenta-
tion which could best and simply describe the different fea-
tures of the realistic additive noise affecting the desired signal
is an important part of an SONAR signal processing. In the
last decade, after the works by Engle [5] and Bullerslev [6]
there has been a growing interest in time series modeling of
changing variance or Heteroscedasticity. These models have
found a great number of applications in non-stationary time
series such as financial records. Generalized autoregressive
conditional Heteroscedasticity; e.g., GARCH [6], is a time se-
ries modeling technique that uses past variances and the past

variance forecasts to forecast future variances. GARCH mod-
els account for two main characteristics, excess kurtosis; i.e.,
heavy tailed probability distribution, and the volatility cluster-
ing; i.e., large changes tend to follow large changes and small
changes tend to follow small ones, compatible to a large ex-
tent to the ambient noises in a natural environment. We sug-
gested this more realistic dynamic model for additive noise
modeling in array signal processing [7]. Now, We offer this
model for the underwater ambient noise in passive SONAR

due to the facts that the commonly used model for environ-
mental additive noise exhibits heavier tail than the standard
normal distribution [4], and the conditional-Heteroscedasticity

suggests a time series model in which successive disturbances
are uncorrelated but dependent, that is, a more logical mod-
eling for the dynamic of the additive noise[6]. Hence, the
GARCH model is a good offer for the additive noise model
in the source localization problem for passive SONAR signal
processing, therefore, in this paper, we propose to assume a
GARCH noise model as ambient noise. This paper is orga-
nized as follows: section (2) we present the GARCH time
series. The considering of the proposed model for the un-
derwater noise and so the approach of direction-finding based
on Maximum Likelihood in conjunction with GARCH(1,1) is
given in section (3), and section (4) is devoted to Cramér-
Rao Bound and the simulation results of the proposed method
come in section (5). Conclusions are provided in the end sec-
tion of this paper.

2. GARCH TIMES SERIES
The exploitation of time-series properties is one the approaches
in the signal modeling and parameter estimation. For exam-
ple ARMA time-series have wide applications in signal pro-
cessing such as SONAR signal processing and noise modeling
[8, 9]. One of them that has been used in the past decade, Con-
ditional Heteroscedasticity time series was first introduced by
[5] in the context of modeling United Kingdom inflation as
known Autoregressive Conditional Heteroscedasticity (ARCH).
Such models are characterized by being conditionally Gaus-
sian, additionally represented by a non-constant and state-
dependent variance. However, in [5, 6, 10], it is shown that a
time-varied variance over time is more useful than a constant
for modeling non-Gaussian and non-stationary phenomena
such as economic series. Generalization of ARCH is proposed
in [6] as called Generalized Autoregressive Conditional Het-
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Fig. 1. Some realizations of the GARCH(1,1) with different coeffi-

cients

eroscedasticity (GARCH), generally speaking, in Heteroscedas-

ticity we consider time series with time varying variance; GARCH

models account for heavy tailed PDF as excess kurtosis and
volatility clustering a type of heteroscedasticity. Now, we let
ε(k) denote a real-valued discrete-time stochastic process, the
GARCH (p, q) process is then given by [6],

ε(k) = η(k)σ(k), η(k) ∼ N (0, 1), (1)

σ2(k) = α2
0 +

q∑
i=1

α2
i ε

2(k − i) +
p∑

i=1

β2
i σ2(k − i), (2)

where η(k) is a sequence of independent and identically dis-
tributed random variables with zero mean and variance of
one, and N denotes the standard normal probability density
function. For example, Figure (1) shows some realizations of
the GARCH(1,1) with different coefficients. The flexibility of
GARCH process are displayed in this figure, so that some dif-
ferent time series such as impulsive data can be modelled.
The estimation of orders p and q has an important role in
the GARCH modeling of the time series. In this way, some
methods are proposed such as Likelihood Ratio Tests [11],
Akaike (AIC) and Bayesian (BIC) information criteria [12].
The Likelihood Ratio Tests would be used to determine to
support the use of a specific GARCH model for a time series.
In the Akaike and Bayesian information criteria approach, we
can compare the alternative models and select the better one
for fitting data.

3. PROPOSED METHOD
3.1. Underwater Noise Modeling
Generally, in a passive system such as SONAR we consider
received additive noise that conclude additive noise and inter-
ferences. In the underwater environment, these are two ma-
jor factors that can limit the performance of general methods
in the practical experiments. In different applications such
as SONAR, the time-varying characteristic is generally due
to time-varying nature of the medium channel, environment,
noise and interferences [13]. For example, underwater acous-
tic channel is a time-varying and multi-path channel specially
in shallow water. It varies due to differential season, area
and situation of sea face. The channel variations can be due
to the spatial movement of the source and/or changes in the
propagation conditions such as sound speed profile. All this
mentioned factors give a stochastic and time-varying nature
to the additive noise. As a result of the above time-varying
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Fig. 2. Kurtosis for GARCH(1,1)

events, it can be assumed that the additive noise has time-
varying variance in the receiver. Moreover, measurements
of the ambient noise in related application such as underwa-
ter environment shows that the noise can sometimes be sig-
nificantly non-Gaussian [3, 4] due to natural and man-made
sources such as reverberation and industrial noise. It can be
shown for the widely accepted model of additive noise and
interference excess kurtosis can be observed. Thus, the as-
sumed noise model that covers the properties of additive noise
such as time-varying variance and heavy-tail PDF is more at-
tractive. Under the above assumptions and important features
of the GARCH time-series model we use this model for the ad-
ditive noise modeling in the underwater acoustics applications
such as SONAR. At the first of the modeling, we need to the
estimation of orders of proposed model, i.e. p and q. In this
way, we used both AIC and BIC and so the results of the our
simulation almost always reached GARCH(1,1). Therefore,

σ2(k) = α2
0 + α2

1n
2(k − 1) + β2

1σ2(k − 1), (3)

Generally, the unknown coefficients (α0, α1 and β0) are es-
timated using Maximum Likelihood method[6]. It is well
known, kurtosis is an important parameter for analysis of non-
Gaussian random processes. It can be shown [6] that if (α2

1 +
β2

1) < 1 and 1−(α2
1 + β2

1)2−2α4
1 > 0 then the kurtosis is

greater than 3 and GARCH(1,1) can include heavy-tail PDF.
Figure (2) show the ability of GARCH modeling for heavy-tail
PDF with Excess kurtosis. In the following, we will propose a
new direction-finding approach using GARCH noise modeling
in the underwater application.

3.2. Direction-Finding Approach
It is well known, the performance of the source localization
and estimation of DOA in passive array applications such as
SONAR are heavily relied upon the particular array signal pro-
cessing algorithms and additive noise modeling that used in
practice. Consequently, we note that in this model, noise
is not uniform across L sensors which is a realistic mod-
eling resting on the assumption of non-uniformity [14, 15],
and non-stationarity ; i.e., time-varying variance. Thus, the
assumed noise model that covers the properties of additive
noise is more attractive. Under the above assumption we use
the GARCH(1,1) process for the additive noise in direction-
finding in array signal processing. Let’s assume that a linear
array of L omni-directional hydrophones receives D (D<L)
plane wave impinging from unknown directions of arrivals.
The incident plane waves are assume to be narrow-band with
a center frequency. Under these conditions, the kth snapshot
vector of array observation can be expressed as

x(k) = A(θ)s(k) + n(k), k = 1, 2, ...,K (4)
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where s(k) is the D×1 vector of the source waveforms, n(k)
is the L×1 vector of sensor noise, A(θ) is the L×D steering

matrix, θ�{θ1, ..., θD}T is the D×1 vector of the unknown

signal DOA, K is the number of snapshots, and (·)T stands for
the transpose operation. We make the following assumptions:
the signal waveforms are stationary; both temporally and spa-
tially, and the signals and noise are statistically independent
of each other. According to the previous noise modeling sec-
tion, we propose to use the Multivariate GARCH(1,1) for noise
modeling in array sensors applications such as SONAR. Thus,
using (3) the additive array noise can follow as multivariate
GARCH(1,1) with zero mean vector and covariance matrix
Q(k), so:

n(k) ∼ MG(n; 0, Q(k)) (5)

where, MG stands for the multivariate GARCH(1,1), and

Q(k) = diag{σ2
1(k), σ2

2(k), ..., σ2
L(k)}. (6)

In this approach, the additive noise model in every sensors
is similar to (3). Consequently, it is well known, one of the
efficient methods in the estimation of parameters in array sig-
nal processing is the ML approach [9]. In the following, we
exploit the Deterministic Maximum Likelihood (DML) ap-
proach model so that the signal waveforms are deterministic
unknown sequences. Thus, the joint PDF of the observed ar-
ray snapshots using GARCH(1,1) model is expressed as

p
X|ψ

(X) =
K∏

k=1

1
det[πQ(ψ, k)]

exp
{−[x(k) − A(θ)s(k)]H

Q−1(ψ, k)[x(k) − A(θ)s(k)]
}

, (7)

where ψ concludes the vectors of the unknown DOAs, signal
waveforms and GARCH(1,1) coefficients. Therefore, by using
(6) and (7) it can be shown that the following holds for Log-
Likelihood[1]:

Lp(ψ) =−
K∑

k=1

L∑
�=1

ln(σ2
� (k)) −

K∑
k=1

{[x(k) − A(θ)s(k)]H

Q−1(ψ, k)[x(k) − A(θ)s(k)]} (8)

Lp(·) stands for the proposed Log-likelihood function to be
maximized over the vector of unknown parameters ψ through
ML approach. So, due to the complicated nature of problems,
this estimation cannot be found analytically, and −Lp(·) can
be minimized through numerical procedures [1] and then un-
known parameters are found. For the statistically analysis of
proposed method, the CRB is derived in the following section.

4. CRAMÉR-RAO BOUND
In order to understand the performance of estimation process
using GARCH modeling we develop CRB [1]. If we denote
the covariance matrix of the estimation errors by C(ψ), then,
the multiple-parameter CRB states that

C(ψ) ≥ CRB(ψ) � J−1, (9)
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Fig. 3. Underwater ambient noise and simulated
GARCH(1,1) model (a) measured ambient noise time series
and (b) GARCH(1,1) with α2
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1=0.84, β2

1=0.06

for any unbiased estimate of ψ. The J matrix is commonly
referred to as Fisher’s information matrix with the following
elements

Jij � E

{
∂L(ψ)
∂ψi

· ∂L(ψ)
∂ψj

}
(10)

For kth single snapshot problem, the J is obtained from

Jij = tr

{
Q−1(ψ)

∂Q(ψ)
∂ψi

Q−1(ψ)
∂Q(ψ)
∂ψj

}
+

2Re

{
∂mH(ψ)

∂ψi
Q−1(ψ)

∂m(ψ)
∂ψj

}

where,
m(ψ) = A(θ)s(k). (11)

In our proposed method based on GARCH noise model in ML

estimation, we have J as a partitioned matrix,

J =

( Jθθ Jθs Jθg

Jsθ Jss Jsg

Jgθ Jgs Jgg

)

then, for the DOA estimation, the CRB is computed as

CRB(θ) =
{

Jθθ −
[
JθsJθg

]
J−1

F

[
JsθJgθ

]T
}−1

(12)

where,

JF =
(

Jss Jsg

Jgs Jgg

)
.

For estimation of CRB, All of the blocks of the above ma-
trixes should be computed. In this general way, we also obtain
them to analyze of the statistical performance of the proposed
GARCH based method.

5. SIMULATION AND RESULTS
In this section, we demonstrate the performance of the pro-
posed approach for modeling of the ambient noise in passive
sonar with two major experiments. In the former, we use the
recorded ambient noise with one hydrophone in shallow wa-
ter. In this scenario, order selection and estimation of PDFs
of the real and simulated data are considered. Before model-
ing process, we exploit the available approaches [11, 12] for
the estimation of GARCH orders p and q and so find that p=1
and q=1 are sufficient orders for this experiment. Figure 3
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Fig. 4. Measured noise and simulated GARCH(1,1) PDF

shows one of the time series of the measured noise and simu-
lated noise with GARCH model. For the statistical comparison
of proposed model, the probability of density function(PDF)
is estimated for the real and simulated noises and shown in
figure 4. In the latter experiment, we use an uniform lin-
ear array (ULA) with six half-wavelength inter-element spac-
ing sensors and equally powered narrow-band sources with
DOA = [6.5 ◦, 16.5 ◦] relative to the broadside. In this sce-
nario, the DOA estimation root-mean-square errors (RMSE)
of the proposed method (i.e. GML), MUSIC and determinis-
tic ML (DML) results have been compared with derived CRBs,
versus different values of SNR and number of snapshots and
are shown in figures 5. In this experiment, we considered
the collected underwater ambient noise in the shallow waters
of Persian Gulf for the performance analysis of the proposed
method. In this way, we see that GARCH(1,1) is an appropri-
ate choice for the modeling of the underwater ambient noise
and observe that the proposed method has resolved the targets
better than the other methods.

6. CONCLUSION
In this paper we propose a new method for the underwater am-
bient noise modeling and the direction-finding using GARCH

time series. Measurements of ambient noise in the underwa-
ter environments such as shallow waters show that the real-
istic noise has non-stationary and non-Gaussian nature. As a
result, the related methods that utilize the Gaussian assump-
tion, degrade in the real experiments. In this way, a flexible
model based on Heteroscedasticity time series is offered that
can be used to noise modeling in underwater applications.
This model so-called GARCH process accounts for heavy tails
PDFs with excess kurtosis and time-varying variances a type
of heteroscedasticity. In this way, we utilized GARCH noise
modeling in the ML approach to estimate DOAs of sources.
For the evaluation of the proposed method, measured under-
water ambient noise are used. The results of these simulations
verify that the proposed method is suitable for ambient noise
modeling and so high-resolution source localization in the re-
alistic underwater environment like shallow waters.
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