
HIGH RESOLUTION VECTOR-SENSOR ARRAY PROCESSING BASED ON
BIQUATERNIONS

Sebastian Miron, Nicolas Le Bihan and Jérôme I. Mars
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ABSTRACT

This paper presents a version of MUSIC algorithm for lin-
ear vector-sensor arrays based on a complexified quaternionic
(biquaternionic)modelization of the output three-components
vector-signals. A way of computing the eigenvalue decompo-
sition of a biquaternion valued matrix is introduced and the
subspace decomposition of the biquaternionic spectral ma-
trix of the observations is used to define the biquaternionic
MUSIC estimator (BQ-MUSIC). Performances of the BQ-
MUSIC are compared with classical long-vector technique.

1. INTRODUCTION

The use of vector-sensors in linear arrays is common in sev-
eral application areas such as seismic, seismology, electro-
magnetics or communications. Vector-sensors collect polar-
ized waves and output signals with vector valued samples. In
the case of vector-sensors recording the propagating waves in
three orthogonal directions, the output vector-signal has three
components. These components are linked in phase and am-
plitude and these relations are driven by the so called polar-
ization parameters.

Polarized signals recorded on vector-sensor arrays have
been studied with array processing techniques [1]. However,
in the literature, it is common use to concatenate the three
components of a vector-signal into a three times longer signal
with scalar valued samples. This technique is called long-
vector and has the advantage to extend classical matrix based
processing to polarized signals. However, this technique does
break the polarization dimension of the signal and does not
allow to take advantage of this additional information, with-
out a sophisticated parametrization of the concatenated sig-
nals. Also, the long-vector structure may be affected during
the process (large datasets) and may lead to impossible recov-
ery of the polarization parameters [2].

In this article, we propose a biquaternion model for three-
component vector-signals that allows direct extension of high

resolution array processing techniques such as MUSIC [3].
Providing that we define the linear algebra tools needed for
decomposition of the observed biquaternionic data into or-
thogonal subspaces, a biquaternionic version of MUSIC (BQ-
MUSIC) can be defined. We introduce this new algorithm and
present simulations that emphasize its advantages versus the
long-vector approach.

2. BIQUATERNIONIC MODEL FOR
VECTOR-SENSOR SIGNALS

2.1. Biquaternions

Biquaternions were discovered, like quaternions, by Sir W.R.
Hamilton [4]. Biquaternions are also called complex quater-
nions and, unlike quaternions, do not form a normed division
algebra [5]. The set of biquaternions is noted HC. A biquater-
nion q ∈ HC is given by:

q = q0 + q1i + q2j + q3k (1)

where qα ∈ CI , i.e. qα = �(qα) + I�(qα) with I =
√−1,

and where i, j and k are the classical quaternion operators
[5]. Like quaternions, biquaternions multiplication is non-
commutative (pq �= qp in general for p, q ∈ HC). It is possible
to consider a biquaternion as the sum of a scalar and a vector
part, both complex valued, such as: q = S(q) + V(q) where
S(q) = q0 and V(q) = q1i + q2j + q3k. Also, any biquater-
nion can be seen in terms of a real and an imaginary part, both
being quaternion valued, such as: q = �(q) + I�(q) where
�(q) = �(q) + �(q1)i + �(q2)j + �(q3)k and �(q) =
�(q) + �(q1)i + �(q2)j + �(q3)k. A biquaternion with
null scalar part is called pure. Note that any complex number
z ∈ CI commutes with any biquaternion q ∈ HC (zq = qz).

There exist different conjugates for a biquaternion q: the
complex conjugate q� = q∗0 +q∗1i+q∗2j+q∗3k, the quaternion
conjugate q = q0− q1i− q2j− q3k and the Hermitian conju-
gate q∗ = (q)� = q∗0 − q∗1i− q∗2j− q∗3k. Note that Hermitian
conjugation for biquaternions is an anti-involution: (qp)∗ =
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p∗q∗, for q, p ∈ HC. The norm of a biquaternion can be de-
fined as : |q| =

√
< q, q > =

√|q0|2 + |q1|2 + |q3|2 + |q3|2
where the scalar product of two biquaternions is: < q, p >=
q∗0p0 + q∗1p1 + q∗2p2 + q∗3p3.

Also, we introduce here the concept of correlation be-
tween two biquaternions1 and random biquaternion valued
vector. Such a vector, with N entries, has values in HN

C
. A

scalar product can be defined for two N -dimensional quater-
nion valued vectors v and w ∈ HN

C
such as: < u,v >HC

=
E[u†

v]. Orthogonality between two biquaternion valued vec-
tors can be stated when their scalar product is null, i.e.
< u,v >HC

= 0.
We now propose to use biquaternion valued signals to

model polarized signals recorded on vector-sensor array.

2.2. Vector-sensor array signal model

2.2.1. Polarized three-component signal as biquaternion val-
ued signal

Consider a vector-sensor with output signal s(t). Each one of
the three components records a signal in an orthogonal direc-
tion: s1(t), s2(t) and s3(t). These signals are correlated if the
wave that generated them is polarized. In this case, the three
signals are linked by phase and amplitude coefficients called
polarization parameters (supposed constant in time and fre-
quency). Considering that the three signals in time are trans-
formed in the Fourier domain as: sη(ν) = FT [sη(t)], with
sη(ν) ∈ CI and η = 1, 2, 3, then the three-component signal
recorded on a vector-sensor can be expressed in the frequency
domain such as:

s(ν) = s1(ν)i + s2(ν)j + s3(ν)k (2)

This signal is pure biquaternion valued. Taking the first com-
ponent s1(ν) as reference and with the previous assumptions
on polarization parameters, s(ν) can be rewritten as:

s(ν) =
(
i + ρ1e

Iϕ1j + ρ2e
Iϕ2k

)
s1(ν) (3)

where ρ1, ρ2 and ϕ1, ϕ2 are the amplitude ratios and the phase-
shifts for the second and the third component respectively,
with respect to the first one. In the following, the working
frequency will be omitted, assuming that we consider narrow-
band signals or that we work independently at each frequency.

2.2.2. Propagation and polarization model

Now, considering a set of N equally-spaced vector-sensors,
recording the contribution of L polarized plane waves, the
recorded signal x ∈ H

N
C

is given as:

x =

⎡
⎢⎢⎢⎣

x1

x2

...
xN

⎤
⎥⎥⎥⎦ =

L∑
l=1

pl(ρ1l, ϕ1l, ρ2l, ϕ2l)a(θl)sl + b (4)

1Consider two pure biquaternions p, q, then E[pq
∗] = E[p1q

∗

1
+ p2q

∗

2
+

p3q
∗

3
] + E[p3q

∗

2
− p2q

∗

3
]i + E[p1q

∗

3
− p3q

∗

1
]j + E[p2q

∗

1
− p1q

∗

2
]k.

where pl(ρ1l, ϕ1l, ρ2l, ϕ2l) is the biquaternion valued polar-
ization coefficient of the lth wave containing its polarization
parameters, a(θl) is the propagation vector of the lth wave on
the array and is given (assuming plane waves contributions
only) by:

a(θl) =
[
1 e−Iθl . . . e−I(N−1)θl

]T

(5)

The vector b ∈ HN
C

contains unpolarized noise contributions
on the vector-sensor array. Also, the sl coefficients corre-
spond to the magnitude contribution of the lth wave (at a fixed
frequency). In the following, we use the notation:

dl(θl, ρ1l, ϕ1l, ρ2l, ϕ2l) = pl(ρ1l, ϕ1l, ρ2l, ϕ2l)a(θl) (6)

so that dl is called the polarized steering vector of the lth wave
and so that the observations can be written as:

x =

L∑
l=1

dlsl + b (7)

The biquaternion observation vector x ∈ HC
N is built from

the observations on the three components as: x = x1i +
x2j + x3k. As a comparison, in the long-vector approach,
the three observations are concatenated in a complex vector
x ∈ C3N :

xLV =
[
x

T
1 |xT

2 |xT
3

]T
. (8)

This biquaternion model is now used to define a version of
MUSIC algorithm for three-component vector-signals.

3. BQ-MUSIC ESTIMATOR

The MUSIC algorithm is based on the decomposition of the
biquaternionic spectral matrix of the observation data vector
x into signal and noise orthogonal subspaces.

3.1. Biquaternionic spectral matrix

3.1.1. Definition

If the output of the vector-sensor array is x ∈ HN
C

given in
(4), then the spectral matrix is defined as:

Λ = E[xx
†] ∈ HC

N×N (9)

Assuming decorrelation between the different sources and
between sources and noise, the biquaternionic spectral matrix
takes the following form:

Λ =

L∑
l=1

σ2
l dld

†
l + Λb (10)

where σl are the powers of the L sources on the antenna and
dl ∈ HC

N are the biquaternionic source vectors describ-
ing source contributions on the antenna. The matrix Λb is
given by: Λb = E[bb

†] = diag(σ2
1 , σ

2
2 , . . . , σ2

N ), where
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σ2
n = E[bnb∗n] is the power of the noise on the nth sensor.

In order to build a MUSIC estimator, it is necessary to de-
compose the observation data spectral matrix. We propose
for the first time, in subsection 3.2, an algorithm to achieve
this decomposition.

3.1.2. Computational issues

If the three-component long-vector model is used (8), the
spectral matrix is complex of size 3N×3N . Compared to this
long-vector matrix having 9N2 complex entries, the spectral
matrix in the biquaternionic approach has N2 biquaternion-
valued coefficients. As a biquaternion is composed of 4 com-
plex numbers, the biquaternion spectral matrix can thus be
represented on 4N2 complex values. This way, the memory
requirements for data covariance representation are reduced
by a factor of 4/9, provided that a biquaternion model is used.

3.2. Biquaternionic matrices diagonalization

Matrices with biquaternionic coefficients (i.e. elements of
H

N×M
C

) were not paid much attention and most of the known
results are given in [6]. A biquaternion matrix A ∈ H

N×N
C

is said Hermitian if A = A
†, where † is the transposition-

(Hermitian) conjugation operator. In order to propose a diag-
onalization algorithm for Hermitian biquaternionic matrices,
we introduce the quaternion adjoint matrix of a biquaternion
valued matrix.

3.2.1. Quaternion adjoint matrix

Any biquaternion valued matrix C ∈ H
N×N
C

can be written
as: C = C1 + IC2, where C1,C2 ∈ HN×N . Then, the
quaternion adjoint matrix, noted ΥC ∈ H2N×2N , associated
to C is defined as:

ΥC =

[
C1 C2

−C2 C1

]
(11)

It can be demonstrated that if C is Hermitian, then so is ΥC

and if C is unitary, then ΥC is also unitary.

3.2.2. Biquaternionic EVD

Just like in the quaternion case, there exists two kinds of
eigenvalues for biquaternionmatrices: the left and right eigen-
values [7]. Here, we only consider right eigenvalues. This is
motivated by the fact that we can link them to the right eigen-
values of the quaternion adjoint matrix and that only the right
eigenvalues of quaternion matrices have a completely known
theory up to now [7].

Consider a Hermitian biquaternion valued matrix C ∈
H

N×N
C

and its quaternion adjoint matrix ΥC ∈ H2N×2N .
As ΥC is Hermitian, there exists a quaternion unitary matrix
V ∈ H

2N×2N such that: V
†ΥCV = diag(δ1, δ2, . . . , δ2N )

where δp ∈ R, ∀p (see [7]). This implies that matrix C can
be decomposed as:

C = U∆U
† (12)

where U ∈ H
N×2N , with the property U

†
U = I, contains

the 2N biquaternionic eigenvectors and ∆ ∈ R2N×2N con-
tains the real eigenvalues of C. Also, this eigenvalue decom-
position of a Hermitian biquaternionic matrix can be written
as:

C =

2N∑
p=1

upupλp (13)

where the 2N eigenvectors of C form an orthonormal basis
over HN

C
. Note that a N × N biquaternion-valued matrix has

2N different eigenvalues and 2N independent eigenvectors.
This means that a source present in the signal is represented
by two eigenvalues in the decomposition of the biquaternion
spectral matrix. The orthogonality constraint between the up

is governed by the biquaternionic scalar product and it can be
shown that it implies more restrictive relationships between
the components of the array than the long-vector model.

3.3. BQ-MUSIC estimator

As presented in (6), every polarized wave impinging on the
vector-sensor array has five parameters and the proposed ver-
sion of MUSIC intends to estimate the five of them simulta-
neously. In order to do so, and as usual in MUSIC approach,
a parametrized steering vector is projected onto the noise sub-
space built using the last eigenvectors of the spectral matrix of
the observations. The biquaternionic steering vector has the
following expression:

f(Ω) =
1

N
[

z ze−Iθ . . . ze−I(N−1)θ
]T

(14)

where Ω = {θ, ρ1, ρ2, ϕ1, ϕ2}, z = i + ρ1e
Iϕ1j + ρ2e

Iϕ2k

and N =
√

N(1 + ρ2
1 + ρ2

2). Then, the BQ-MUSIC consists
in finding the set of parameters Ω that maximizes the follow-
ing functional:

F(Ω) =
1

f†(Ω)ΠBf(Ω)
(15)

where ΠB =
∑2N

p=2L+1 upu
†
p is built with the last 2(N −L)

eigenvectors of Λ.

4. SIMULATIONS
The BQ-MUSIC algorithm proposed in this paper is com-
pared to the corresponding algorithm LV-MUSIC based on
the classical long-vector model (8). First, we consider a sce-
nario with one polarized source recorded on an array of ten
three-component sensors. The source polarization parame-
ters are θ = 0.095 rad, ρ1 = 1, ρ2 = 2, ϕ1 = 0 rad
and ϕ2 = 0.35 rad. One hundred samples have been used
to estimate the interspectral matrices. Fig. 1 plots the func-
tions for BQ and LV algorithms for fixed values of polariza-
tion parameters ρ1, ρ2, ϕ1, ϕ2, corresponding to the polariza-
tion of the impinging wave. The 3dB width of the detection
peak for the BQ algorithm is smaller compared to the LV one,
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meaning a that the BQ approach presents a better resolution
power. Fig. 2 illustrates a two sources case. We consid-
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Fig. 1. DOA estimation for a one source case

ered that the number of sources has been badly estimated and
only one source was considered for the computations. BQ
outperforms LV when robustness to this kind of errors is con-
sidered. These results can be explained by the fact that when
diagonalizing the interspectral matrix, a stronger orthogonal-
ity constraint is imposed between noise and signal subspaces
in the BQ approach. In Fig. 3 the root-mean square error for
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Fig. 2. DOA estimation for sub-estimated number of sources

DOA estimation versus SNR, for BQ and LV (one point = one
hundred runs). A small loss of accuracy is observed for the
BQ algorithm, especially for very low SNR, but generally the
proposed algorithm performs fairly well compared to the LV
one. The explanation to this minor drawback is the compres-
sion of information in biquaternion interspectral matrix, that
reduces memory requirements for data covariance represen-
tation, as shown in subsection 3.1.2. However, the proposed
model takes into account only the orthogonality and not the
coupling between the vector-sensor components.
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Fig. 3. Root mean square error for DOA estimation

5. CONCLUSIONS

This article presents a biquaternion model for polarized sour-
ces recorded on three-component vector-sensor arrays that al-
lows a simple derivation of a MUSIC-like algorithm (BQ-
MUSIC). The use of biquaternions reduces by approximately
half the memory size required for data covariance represen-
tation while it increases resolution for DOA estimation with
close, together with almost the same RMSE on DOA as the
long-vector-approach.
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