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ABSTRACT

A new method for subspace identification in array signal process-
ing applications is proposed. The method is based on random ma-
trix theory and provides consistent estimates even when the obser-
vation dimension increases without bound at the same rate as the
number of observations. This guarantees a good behavior in finite
sample size situations, where the number of sensors and the num-
ber of samples have the same order of magnitude. Consistency of
the algorithm holds in situations where the signal and noise sub-
spaces are asymptotically separable in the sense that, in the asymp-
totic sample eigenvalue distribution, signal and noise eigenvalues
generate different spectral clusters.

1. INTRODUCTION

Subspace-based algorithms exploit the orthogonality between sig-
nal and noise subspaces in order to derive estimators of quantities
that parametrize one of these subspaces. One of the main draw-
backs of the subspace-based methods is the fact that their perfor-
mance drops dramatically when either the signal to noise ratio or
the number of samples fall below a certain threshold [1][2]. This
behavior has usually been attributed to the presence of a "subspace
swap", meaning that some of the noise eigenvectors of the sam-
ple covariance matrix are mistakenly associated with the signal
subspace and vice-versa [3][4]. In this paper, we take a differ-
ent approach to the analysis of the performance breakdown effect
in subspace methods. We intentionally focus on the small sam-
ple size regime in array signal processing applications, whereby
the number of samples (/V) and the number of sensors (M) are
of the same order of magnitude. Since the finite case is essen-
tially intractable, we concentrate on the asymptotic behavior, i.e.
we assume that both quantities are large but have the same order
of magnitude (M — oo, N — oo, M/N — ¢,0 < ¢ < 0).
This type of limit is usually very useful in order to characterize the
finite sample size behavior of array processing architectures.

Let us consider a collection of N complex valued array obser-
vations, y(n) € CM*!, n = 1... N obtained from an array of
M > 1 sensors. Let R represent the true M X M covariance ma-
trix of the observation, with eigenvectors {e;, ¢ =1... M} and
associated eigenvalues A1 < A2 < ... < Apr. Each eigenvalue is
repeated according to its multiplicity, and the eigenvectors associ-
ated with eigenvalues of multiplicity higher than one are taken to
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be an arbitrary orthonormal basis of the associated subspace. Let
Exn € CM*E denote a matrix containing an orthonormal basis
of eigenvectors spanning the noise subspace, i.e. those associated
with the smallest eigenvalue of R (which has multiplicity K, so
that Ay = ... = Ak). We will assume throughout the paper the
the dimension of the noise subspace, namely K, is known.

Subspace identification algorithms are based on the property
that any vector s lying on the signal subspace is orthogonal to the
columns of E, that is EXs = 0. In most array signal processing
applications, one has access to a parametrized version of the vector
s = s(0) as a function of some parameter vector 8. This parame-
ter vector can be found by inspecting those values of @ that have
the property EX's (8) = 0, i.e. values of @ for which the column
s (0) lies on the signal subspace. In practice, though, the eigen-
vectors {e;} are known, and must be estimated from the received
data. Let R represent the sample covariance matrix drawn from N
consecutive samples. We will denote by {&;, i =1... M} and
A < o <...< A the eigenvectors and associated eigenval-
ues of R. In particular, Ex will be a matrix containing the noise
eigenvectors of the sample covariance matrix. Since in general
Eyx # Eu, the columns of Ey are not completely orthogonal
to any vector s lying on the signal subspace. However, assuming
that Ev is a close approximation of Ex, one can expect that the
projection of a vector in the signal subspace onto the columns of
En will in general have a very small norm. Based on that prin-
ciple, subspace identification techniques estimate a certain set of
parameters 6 by minimizing the norm of such a projection, i.e. the
minimizers of the cost function

7(0) =s" (0) ExExXs (0). (1)

This paper will only be concerned with subspace-based algo-
rithms that conform to this quadratic structure. One can imag-
ine 77(@) as an estimator of the true cost function 7 () =
s’ (0) ENEXs (), which is in practice unknown. In spectral
analysis and DoA detection applications, this estimating proce-
dure is usually referred to as the MUSIC algorithm [5, 6], and
the cost function in (1) as the MUSIC pseudospectrum. Under
the appropriate statistical assumptions, and when the number of
samples increases without bound (N — oc0) and the observation
dimension is taken to be a fixed quantity (M < o), 7 (@) tends
almost surely to the deterministic original cost function 7 (8). If
this convergence is uniform in 6, one can ensure that the estimates
obtained are consistent as N — oo, M < oo. In this situation, we
will state that the estimator is N -consistent.

In practice, however, both the number of samples (/V) and the
number of sensors (M) are finite quantities. Therefore, it seems
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quite natural to investigate the performance of subspace algorithms
whenever M, N have the same order of magnitude. This issue has
been less studied in the literature, mainly due to the high com-
plexity involved. However, a lot of insight can be gained by an-
alyzing the asymptotic behavior of the cost function in (1) when
M,N — oo for M/N = ¢, 0 < ¢ < oco. Note that this is a good
approximation of reality, in the sense that M, N have the same
order of magnitude as in a practical situation. In order to carry
out such bidimensional limits, one must resort to random matrix
theory techniques.

2. ASYMPTOTIC DESCRIPTION OF R AND
M, N-INCONSISTENCY OF TRADITIONAL
APPROACHES

Random matrix theory is a branch of statistics that is devoted to
the study of the asymptotic behavior of the eigenvalues and eigen-
vectors when their dimensions tend to infinity. A popular result of
random matrix theory states that, under some appropriate techni-
cal assumptions, the empirical eigenvalue distribution of R tends
(as M, N — oo at the same rate) to a compactly supported non-
random density. Furthermore, one can characterize the asymptotic
distribution of the eigenvalues of R in terms of the asymptotic dis-
tribution of the eigenvalues of R. That characterization is usually
carried out in terms of the Stieltjes transforms of the correspond-
ing densities of eigenvalues, which are complex functions of the
form

m(z) = st <ﬁ — ZIA{>71 s, B(z) = % tr {(ﬁ — zIM>71]
2)

when associated with R or

m(z) =s" (R—zIy)"'s, b(z)=—tr [(R—zIM)_l}

3)

1
M
when associated with R.

The convergence of the functions in (2) as M, N — oo at the
same rate can be studied under the following additional statistical
assumptions:

(As1) The observation vectors y(n) can be modeled as
y(n) = RY?u(n), where R/ is a positive definite M x M Her-
mitian deterministic matrix, and u(n), n = 1... N, is a collection
of independent and identically distributed complex M X 1 random
vectors. The real and imaginary parts of the entries of u(n) are
all i.i.d. absolutely continuous random variables with zero mean,
variance 1/2 and finite absolute eighth moments.

(As2) the spatial correlation matrix R has uniformly bounded
spectral radius for all M and the functions m(z) and b(z) have a
limit as M — oo forall z € C* = {z € C: Im [2] < 0}. Fur-

thermore, sup,, <\/M maxi<;<m !{S}J) < +o0 , where {s},
denotes the ith entry of the column vector s.

For any z € C*, and under (As1-As2) the functions 7(2)
and l;(z) are asymptotically close to two deterministic counterparts

m(z) and b(2), in the sense that [7, 8]
(=) = m(2)| = 0, [b(z) = b(z)| — 0

almost surely for all z € C*t as M,N — oo at the same rate,
where b(z) = b is the unique solution to the following equation in

theset {bc C: —(1—c)/z+cbe C}:

M

1 1
b_Mmz::l)\m(lfcfczb)fz7 @
and u
sfenels
i = m . 5
m(z) mzzl Am (1 —c— czb(z)) —z )

With this result, we observe that b(z) and 172(z) are asymptoti-
cally close to the deterministic counterparts b(z) and (), which
are much easier to analyze. To simplify the analysis, and since we
are only interested in the asymptotic behavior as an approximation
of the finite reality, we will assume that the empirical eigenvalue
distribution of R is not altered as M — oo. In this case, b(z) is the
Stieltjes transform associated with the asymptotic sample eigen-
value distribution, the density of which will be denoted by ¢(z).
This density can easily be retrieved from b(z) using the Stieltjes
inversion formula, namely g(z) = lim, o+ = Im [b(z + jy)],
valid for all 2 € R such that ¢(z) exists. In practice, one observes
that the density q(x) presents a series of eigenvalue clusters, each
one associated to one or more eigenvalues of the true covariance
matrix (see further [9]). As the number of samples per sensor in-
creases (¢ — 0) or the true eigenvalues become more separated
from one another, each true eigenvalue tends to generate a single
eigenvalue cluster separated from the rest in the asymptotic sample
eigenvalue distribution. This will be further exploited in the next
section.

Let us now use these results to study the behavior of the tra-
ditional subspace estimation function in (1) as M, N — oo at the
same rate. Note, first, that we can express that cost function in
terms of 1(z) as follows (from now on, we obviate the depen-
dence on the parameters 6):

1 5\K+6
7 = lim lim — Im |77 jy)ld 6
0= lim lim = | m [r(z + jy)] dz (6)
where € > 0. This can be readily seen by replacing m(x + jy)
above with the expression given in (2).
Using (6) and noting from (5) that |r(z) — m(z)| — 0 as
M, N — oo at the same rate, we can ensure that |7 —7)] — 0
almost surely, where

M
— H H
n= WmS  €me€nm,S
m=1

w :/9 cAmzq(x)dz
"= Jo Con (L= = capl@)) — 0% + (Pmeng(@)?

and with p(z) and ¢(z) denoting the real part and the scaled
imaginary part of b(z) when restricted to the real axis, i.e.
lim, .o+ b(z +jy)| = p(z) + 7jq(x), and § > 0 being the
unique positive value such that

It is important to note that, when M, N — oo at the same rate,
the traditional subspace-based estimator in (1) does not concen-
trate all the energy on the true noise eigenvectors. Indeed, we see
from the expression of the coefficients w,, that these values can
be non-zero even when m > K, implying that part of the energy

IV-1074



concentrated on ExyE¥ is spilled onto the true signal subspace
instead of remaining concentrated on the noise subspace. This en-
ergy spilling onto the signal subspace is the cause for not having
complete orthogonality between the sample noise subspace and the
true signal subspace when M and N have the same dimension (as
it occurs in a finite sample size situation). This is the cause for the
performance breakdown effect of subspace-based algorithms.

3. AN M, N-CONSISTENT SUBSPACE ESTIMATOR

From all the above, we can conclude that traditional subspace-
approaches are N-consistent but not M, INV-consistent. In this sec-
tion, we propose a new subspace-based estimator that is M, N-
consistent, i.e. consistent not only when N — oo for a fixed M,
but also when M, N — oo at the same rate. This will guarantee
a better behavior of the algorithm whenever M and N have the
same magnitude.

Note, first of all, that we can give an analytical expression for
7 as a function of m(z) in (3), simply by making use of the Cauchy
integral formula, i.e.

1 sHENyELs 1

Y m(z)dz  (7)

! 27 Jo-

27 Je-
where C~ is a negatively' oriented contour taking values
on C\ {A1,...,Am} and enclosing only the noise eigenvalue,
namely \; = ... = Ag. In particular, we can choose a contour
generated as follows. Consider the following complex function,
defined on the positive real axis f : Rt — C,

J(@) = 1 —c— cxb(x)

(®)
where, with some abuse of notation, b(z) = lim, o+ b(z +jy),
where b(z) is as defined in the last section. It can be shown [10]
that f(z) in (8) is continuous on R and differentiable on all the
domain except for a finite number of points, corresponding to the
boundary of the support of the limiting sample eigenvalue distri-
bution. On the other hand, the real part of f(z) is monotonically
increasing with z, whereas the imaginary part of f(x) is positive
for = in the support of the limiting sample eigenvalue distribution
and zero elsewhere.

In order to derive the estimators, we need to assume that there
exists separation between noise and signal eigenvalue clusters in
the asymptotic distribution function of the eigenvalues of R. This
can be technically expressed as follows (see further [10]).

(As3) Splitting condition. We will assume that the number of
available samples per sensor is higher than a predefined value,

N ;M A 2
—_— > —_—
M M = Am — 1N

where 7 is the smallest real valued solution to the following equa-
tion:

— —2m___ _. )
M m=1 ()\m - 77)3

This is the minimum number of samples per sensor that is needed
in order to guarantee separation of the noise and first signal eigen-
value cluster of the asymptotic eigenvalue distribution of R..

'We follow the usual convention of orienting positive contours counter-
clockwise.

From the properties of f(z) described above, and under (As3),
one can always choose two real-valued constants, o1 and o2, 01 <
o2, such that both f(o1) and f(o2) are real-valued, and the inter-
val [f(o1), f(o2)] contains the noise eigenvalue only. Now, it can
be seen that, if we move = from o1 to o2, the function f(x) con-
catenated with its conjugate (denoted by f*(z)) as x goes back
from o2 to o1 describes a curve with the same properties as the
contour C'~ above. Consequently, we can express (7) as

1 a2 "O2

) 1
m(f(x))f (x)dm,?j .

m(f*(z)) (f"(z))" da

(10)

where f’(z) and (f*(z))’ denote the derivative of f(x) and f*(z)
respectively.

Observe now that, using (5) restricted to z = 2 € R™, we can

write

n

"~ 2y s,

M
sfenells

1 Am — f(x)

Hence, multiplying both sides of the last equations and its conju-
gate by f'(z) and (f*(z))’ respectively, and using (10), we obtain

m(z) (1 —c— cab(z)) = =m(f(z)). (11)

m=

p=1 [T (- - b)) £@) do

T Joy

or, from the definition of f(z) in (8),

o2 _ 27/
S / Im {m(x)w .
T Joy 1—c— cab(x)

It can be shown that the integrand is bounded over C, and by virtue
of the Dominated Convergence Theorem,

g9 _ 277
n= tim —— [ (et ez @)
y—0+ 27 /. 1—c—czb(z)
o2 _ 277
~ lim L/ m(n) et e V&) g,
y—0- 27] J,, 1—c—czb(2)

with z = x 4 jy and where we have defined m(z) = m*(z")
and b(z) = b*(2*) when z € C~ = {z € C:Im|z] < 0}. Us-
ing again the fact that the integrands in the above equation are
bounded, we can finally express 7 as

1 —c+ % (2)

1
= lim — m(z) ——————"2dz 12
K yi>0+ 2mj Jory (2) 1—c—czb(z) (12)

where OR, is a negatively oriented rectangular contour with ver-
tices {o1 —jy,02 —jy,02 +jy, 01 +jy}.

The advantage of expressing this quantity in terms of the com-
plex variable z is the fact that, when z € C\R, we have a triv-
ial way of M, N-consistently estimating the functions /m(z) and
b(z). Indeed, by definition, /() and b(z) are (pointwise) M, N-
consistently estimated by 7(z) and b(z) for any z € C\R as
M, N — oo. Therefore, it seems reasonable to obtain a poten-
tially consistent estimator by replacing m(z) and b(z) with 7(2)
and b(z) in the equations above. Inserting 77(z) and b(z) into (12)
and using the asymptotic eigenvalue separation arguments in [11],
one can show that the proposed estimator takes the form [10]
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with ¢,,,m = 1... M, defined as follows:

1 m < [M— Nt
Om=4 1—0¢, +v,, [M-—NT+1<m<K
b m>K
S
S = Y 7
k=[M—N]*+1 (/\m = Ak (/\m - uk)
M A (Am _ /’Lm)
b= Y —
k=[M—N]*+1 (Ak - ’\m) (’\k - /‘m)
k#m
and where p1; < ... < pu,,, are the real-valued solutions to the
following equation in p
M 3
1 Ak 1
— — = - (13)
M kzzl Me—p ©

It is worth pointing out that the final proposed estimator takes
the form of a weighted subspace identification algorithm that uses
both signal and noise subspaces. Our approach gives the (asymp-
totically) optimum way of combining both subspaces in order to
maximize the separation in the small sample size regime. We also
stress that 7) is not guaranteed to be positive for every value of s. In
practice, this has no further implications in most subspace-based
identification methods such as MUSIC.

4. NUMERICAL EVALUATION

We compare the performance of the MUSIC algorithm using our
subspace estimator with the traditional version of the algorithm.
The scenario consisted of two sources located at 35° and 40° of
azimuth impinging on a uniform linear array of 10 sensors sep-
arated half a wavelength apart and received in ominidirectional
background noise. All the signals were mutually independent, cir-
cularly symmetric, Gaussian distributed, with zero mean. Figure 1
compares the mean squared error obtained by averaging 500 real-
izations of the proposed and traditional MUSIC algorithms when
N = 7 samples and N = 70 samples were available at the array.
Results are shown for different value of the signal-to-noise (SNR),
assumed equal for the two sources. The unconditional Cramér-Rao
Bound (CRB) is also shown for informative purposes. Observe
that the proposed MUSIC algorithm presents an SNR threshold
much lower than the traditional MUSIC algorithm. Furthermore,
the proposed approach shows also a better performance in the high
SNR region.

5. CONCLUSIONS

We have presented a new algorithm for subspace-based estimation
in array processing applications that, under certain conditions, pro-
vides consistent estimates when both the number of samples and
the number of sensors increase without bound at the same rate.
This property guarantees a good performance in the small sample
size regime, i.e. in situations were the number of samples and the
number of sensors have the same order of magnitude. Simulation
results indicate that the threshold at which breakdown of the MU-
SIC algorithm occurs is significantly reduced with our approach.
Interestingly enough, the algorithm also improves the traditional
MUSIC performance at high SNR.

Performance of traditional and proposed MUSIC algorithms

N=70

— - Traditional MUSIC
. —— Proposed MUSIC
10 ¢ CRB

-10 5 0 5 10 15 20 25 30 35 40
SNR (dB)

Fig. 1. Comparative evaluation of the MSE achieved by the pro-
posed and traditional MUSIC algorithms as a function of SNR.

6. REFERENCES

[1] D. Tufts, A. Kot, and R. Vaccaro, The Threshold Effect in
Signal Processing Algorithms Which Use an Estimated Sub-
space, in SVD and signal processing, II: Algorithms, analysis
and applications, New York, Elsevier, 1991.

[2] P. Stoica, V. gimonyté, and T. S6derstrém, “On the resolution
performance of spectral analysis,” Signal processing, vol. 44,
pp- 153-161, June 1995.

[3] J. Thomas, L. Scharf, and D. Tufts, “The probability of a sub-
space swap in the SVD,” IEEE Trans. on Signal Processing,
vol. 43, pp. 730-736, Mar. 1995.

[4] M. Hawkes, A. Nehorai, and P. Stoica, “Performance break-
down of subspace-based methods: Prediction and cure,” in
Proceedings of the IEEE ICASSP 2001, pp. 4005—4008.

[5] R. Schmidt, “Multiple emitter localization and signal para-
meter estimation,” in Proc. of the RADC, Spectral Estimation
Workshop,, pp. 243258, 1979.

[6] G. Bienvenu, “Influence of spatial coherence of the back-
ground noise on high resolution passive methods,” Proc.
IEEE ICASSP, 1979, pp. 306-309.

[7]1 J. Silverstein, “Strong convergence of the empirical distrib-
ution of eigenvalues of large dimensional random matrices,”
Journal of Multivariate Analysis, vol. 5, pp. 331-339, 1995.

[8] V. Girko, An Introduction to Statistical Analysis of Random
Arrays. The Netherlands: VSP, 1998.

[9] J. Silverstein and P. Combettes, “Signal detection via spectral
theory of large dimensional random matrices,” IEEE Trans.
on Signal Processing, vol. 40, pp. 2100-2105, Aug. 1992.

[10] X. Mestre, “Improved subspace-based estimation in the
small sample size regime,” 2005. Preprint. Available at
http://www.cttc.es/drafts/cttc-rc-2005-005.pdf.

[11] Z. Bai and J. Silverstein, “No eigenvalues outside the sup-
port of the limiting spectral distribution of large dimensional
sample covariance matrices,” Annals of probability, vol. 26,
pp. 316-345, 1998.

IV -1076



