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ABSTRACT

Direction finding (DF) performance is assessed for an ar-
ray of airborne vector sensors whose manifold is perturbed.
A calibration algorithm explicitly accounting for the polar-
ization diverse nature of the vector sensor is developed. DF
performance improvements are demonstrated with use of
the proposed calibration algorithm.

1. INTRODUCTION

Conventional arrays consist of identical sensor elements,
each of which samples a scalar projection of one of the elec-
tromagnetic fields. In contrast, a polarization diverse array
includes sensors which sample different projections of the
fields. Some of the sensors may have the same phase center,
enabling estimation of the polarization state as well as the
Poynting vector. A nominal vector sensor consists of two
orthogonal triads of dipole and loop antennas, as shown in
Figure 1.

A key application of sensor arrays is the passive local-
ization of a radiating signal source. The sensor-to-sensor
delays contain information about the source location in terms
of the source azimuth angle θ and source elevation angle φ
for two dimensional array configurations. This information
is exploited in direction finding (DF) algorithms that esti-
mate the source angle-of-arrival (AOA). DF algorithms uti-
lize an underlying model which presumes a coherent phase
relationship among the antenna array elements. Such a re-
lationship almost never occurs in practice due to various
anomalies such as sensor pattern variations and multipath
propagation effects. Thus, array calibration, which attempts
to fit the actual array response to the theoretical response, is
essential for obtaining accurate DF estimates.

The angular resolution of an array is directly related to
the size of its aperture. For airborne applications in which
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a sensor array is mounted on a small aircraft, the physical
space available on the airframe is limited and as such, the
array aperture is restricted.

Usage of a vector sensor for source localization was first
proposed in [1]. The rationale is that because a vector sensor
uses multiple components of electromagnetic information,
it can offer accurate source location estimates with a smaller
aperture. Indeed, if a full vector sensor (which measures
the complete electric and magnetic fields) with an arbitrarily
small aperture provides sufficient sensitivity, the source lo-
cation can be estimated by simply calculating the Poynting
vector. Thus, vector sensors are useful in situations wherein
the available physical space is constrained.

In the following sections, a novel calibration algorithm
designed specifically for a polarization diverse array is de-
veloped. This calibration algorithm is motivated by the ob-
servation that the polarization state is parameterized by a
linear two-dimensional subspace [2]. The remainder of this
paper is organized as follows- Section 2 develops the sig-
nal model for a polarization diverse array. Section 3 for-
mulates the proposed polarization diverse calibration algo-
rithm. Section 4 presents the simulation results and discus-
sion.

2. SIGNAL MODEL FORMULATION

Initial studies with a vector sensor mounted on an aircraft
indicated that some elements of the vector sensor act as
“feeds” and are strongly coupled to the airframe, reducing
their usefulness for DF purposes. The proposed solution to
the problem is to use a “trimmed” vector sensor employ-
ing only the elements with insignificant airframe interac-
tion. Multiple trimmed vector sensors are sited at strategic
locations on the airframe, providing increased aperture for
accurate AOA estimates.

A particular trimmed 8-channel vector sensor configura-
tion studied in this paper is shown in Figure 1. The two loop
antennas measure the x and y components of the magnetic
field, while the vertical dipole measures the z component
of the electric field. In view of aerodynamic issues and the
varying sensor interaction at different locations on the air-
frame, the trimmed vector sensors on the aircraft are not all

IV ­ 10651­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



identical; the one mounted on the tip of the airframe lacks
the vertical dipole.

Trimmed vector sensor

Full vector sensor

Trimmed vector sensor

Fig. 1. A full vector sensor and its decompostion into
trimmed vector sensors. The 8-channel aircraft configura-
tion consists of identical 3-channel sensors mounted on the
wings, and a 2-channel sensor mounted on the tip.

2.1. Signal Model

It is assumed in this paper that the vector sensor array is in
the far-field of a narrowband signal.

Following [3], define the components of the electric and
magnetic field received on the array as
⎡
⎢⎢⎢⎢⎢⎣
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⎤
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sin (γ) e+jη

cos (γ)

]

= Θ (θ, φ)p (γ, η) (1)

where Θ (θ, φ) and p (γ, η) are defined appropriately, and
0◦ ≤ γ ≤ 180◦ and −180◦ ≤ η ≤ 180◦ are the ranges of
the polarization angle and phase difference, respectively. It
should be pointed out that the additional polarization state
parameters γ and η are now required to index the array man-
ifold, along with the previously defined conventional AOA
parameters θ and φ. However, knowledge of γ and η is
generally not of interest, and they are thus considered to be
nuisance parameters.

Let rm be a location matrix for sensors of a particular
type, and let Θm (θ, φ) be the appropriate row of Θ (θ, φ)
corresponding to the particular field component that the sen-
sors measure. Define a unit vector in the source direction

u (θ, φ) =
[

cos (θ) sin (φ) sin (θ) sin (φ) cos (φ)
]T

(2)

The plane wave (far-field) response is defined as

vm (θ, φ) = e+j 2π
λ rT

mu(θ,φ) (3)

where λ is the signal wavelength.
The response/steering vector of the vector sensor array

is generated by concatenating the response of identical sen-
sor types

vvs (θ, φ, γ, η) =

⎡
⎢⎣

vvs,1 (θ, φ, γ, η)
...

vvs,M (θ, φ, γ, η)

⎤
⎥⎦ (4)

where

vvs,m (θ, φ, γ, η) = vm (θ, φ) [Θm (θ, φ)p (γ, η)] (5)

and M is the number of distinct field components being
measured, or equivalently, the number of different sensor
types.

For the trimmed vector sensor configuration shown in
Figure 1 measuring the three components Hx, Hy , and Ez ,
the value of M equals 3. Letting vlw, vrw, and vt represent
the plane wave response for the sensors on the left wing,
right wing, and tip of the aircraft, respectively, the trimmed
vector sensor response becomes

vvs (θ, φ, γ, η) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
vlw

vrw

)
Ez⎛

⎝ vlw
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⎞
⎠ Hx

⎛
⎝ vlw

vrw
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⎞
⎠ Hy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which is indeed an 8 × 1 steering vector.

3. ARRAY CALIBRATION

Suppose an N element sensor array observes a stationary,
far-field, narrowband source at K known and distinct look
angles. Let v (θk, φk) and z (θk, φk) represent the N × 1
modeled and measured array steering vector, respectively,
for the source azimuth AOA θk and elevation AOA φk, where
k = 1 . . . K.

Define

V (θ, φ)
∆=

[
v (θ1, φ1) . . . v (θK , φK)

]

and

Z (θ, φ)
∆=

[
z (θ1, φ1) . . . z (θK , φK)

]

where θ and φ are vectors whose kth elements are θk and
φk, respectively.

In the following development, conventional array cali-
bration is introduced in order to augment its expansion into
a calibration algorithm that explicitly accounts for the po-
larization diverse nature of the vector sensor.
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3.1. Conventional Array Calibration Algorithm

Conventional array calibration seeks to compute a calibra-
tion matrix A ∈ C

N×N so that z(θk, φk) ≈ Av(θk, φk).
One approach to compute the calibration matrix A is to

use the least squares criterion [4]

arg min
A

JCA (6)

where

JCA = ‖Z (θ, φ) − AV (θ, φ)‖2

F
(7)

and the subscript F denotes the Frobenius norm. The opti-
mal solution for the calibration matrix is computed as

A = Z (θ, φ)V# (θ, φ) (8)

where # denotes the Moore-Penrose pseudoinverse.
It is shown in [4] that this calibration algorithm (which

does not assume polarization diversity of the array) yields
noticeable performance gains when used with a conventional
array. This calibration algorithm can also be applied to a
polarization diverse array, with reasonable expectation for
some performance gain. However, further performance im-
provement may be possible if a calibration algorithm explic-
itly accounting for the polarization diverse nature of the vec-
tor sensor is employed. This idea is now further explored.

3.2. Proposed Polarization Diverse Array Calibration
Algorithm

Let A1 and A2 represent the calibration matrices for two
distinct polarization states, and define

AD
∆=

[
A1 A2

]
(9)

Furthermore, define a matrix of polarization state coeffi-
cients

P =
[

�1N ⊗ [
c11 . . . c1K

]
�1N ⊗ [

c21 . . . c2K

]
]

(10)

The calibration may now be posed as the following opti-
mization problem

arg min
c1k,c2k,A1,A2

JPDA (11)

where

JPDA
∆=

∥∥∥Z (θ, φ) − AD

[
P �

(
�12 ⊗ V (θ, φ)

)]∥∥∥2

F
(12)

The symbols � and ⊗ denote the Hadamard and Kronecker
product, respectively. The optimal solution for the calibra-
tion matrices (in the least squares sense) is

AD = Z (θ, φ)
[
P �

(
�12 ⊗ V (θ, φ)

)]#

(13)

ck
∆=

[
c1k

c2k

]
=

[
A1v (θk, φk) A2v (θk, φk)

]#
z (θk, φk) (14)

The optimal calibration parameters can now be computed
by iterating between (13) and (14). For a selected tolerance

ε, a criterion such as 1
2N2

∥∥∥A(i)
D − A(i−1)

D

∥∥∥
F

≤ ε, where

A(i)
D is the estimate of AD at the ith iteration, can be used

to terminate the iterations.
It should be noted that it is not necessary to search over

ck in a DF algorithm. Indeed, when the DF estimator (such
as MuSIC) is cast as a Rayleigh quotient, ck can be com-
puted as simply an extremal eigenvector. The dimensional-
ity of the search space as such remains unchanged.

4. SIMULATION RESULTS

The trimmed vector sensor configuration in Figure 1 is used
for simulation studies. The aircraft geometry at 90 MHz
is shown in Figure 2. Sensor manifold perturbations are

Fig. 2. Small aircraft geometry at 90 MHz with 3 trimmed
vector sensor sites (c.f. Figure 1).

assumed to be caused by near-field scatterers local to the
airframe. For every look angle k, the measured steering
vector z(θk, φk) is modeled as follows:

z (θk, φk) = vvs (θk, φk) + ε

Nscat∑
s=1

vmp,s (15)

where

vmp,s =

⎡
⎢⎢⎣

v1 (θs, φs) [Θ1 (θs, φs)Γsp (γ, η)] e+jds

...
vM (θs, φs) [ΘM (θs, φs)Γsp (γ, η)] e+jds

⎤
⎥⎥⎦ (16)

where Γs is a 2 × 2 random scattering matrix and ds is the
path length difference. The parameter ε determines the rel-
ative strength of the multipath component and Nscat is the
number of scatterers. For the simulations, ε = 10 dB and
Nscat = 20.
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Table 1. Performance of calibration algorithms for a polarization-diverse array.
Algorithm ε̄θ (Deg) ε̄φ (Deg)

Conventional Calibration 0.77 0.40
Polarization Diverse Calibration 0.13 0.05

4.1. Discussion

For the study presented in this paper, simulations were per-
formed using 200 calibration points randomly sampled over
the set of data taken in 90◦ azimuth and 30◦ elevation sec-
tors. The presented results are the average of 10 trials.

For comparison purposes, DF performance is evaluated
for the following scenarios:

1. Conventional array calibration: DF is performed
using conventional array calibration (6).

2. Polarization diverse array calibration: DF is per-
formed using polarization diverse array calibration (11).

The root mean square error (RMSE) of the AOA estima-
tion error is defined as

ε̄θ =

√√√√ 1
K

K∑
k=1

(
θ̂k − θk

)2

(17)

and

ε̄φ =

√√√√ 1
K

K∑
k=1

(
φ̂k − φk

)2

(18)

for azimuth and elevation errors, respectively, and is used to
assess DF performance for the above scenarios.
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Fig. 3. Example DF spectra. The diamond represents the
true source location.

Table 1 offers a quantitative algorithm performance com-
parison which verifies that significant performance gains

over conventional array calibration algorithms are possible
with usage of the proposed polarization diverse calibration
algorithm. This is further corroborated in the example DF
spectra in Figure 3. The diamond in Figure 3 represents the
true peak location. The peak width when using the polariza-
tion diverse calibration algorithm is significantly narrower
and closer to the true source location than when using con-
ventional calibration. Furthermore, the promising results
of the polarization diverse calibration algorithm indicates
that it should not be the source of a performance bottleneck
when used in an actual system.

5. CONCLUSION

Vector sensors are useful in applications where limited phys-
ical space necessitates sensor arrays with reduced aperture.
Source-localization performance in the presence of sensor
manifold perturbations was assessed for a configuration of
multiple trimmed vector sensors applicable to a small air-
craft. A novel polarization diverse calibration algorithm
was developed and shown to yield a very significant per-
formance improvement over calibration algorithms for con-
ventional arrays.
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