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ABSTRACT

This paper is concerned with robust array signal processing 

in impulsive noise environments. A simple weighting signal 

is defined to weight all sensor data in a snapshot-by-

snapshot way, so that the resulting array data have the 

desired statistical characteristics used in the subspace-based 

direction-of-arrival (DOA) estimation techniques. Then any 

traditional subspace-based technique can be used for DOA 

estimation. In working example, the MUSIC algorithm is 

employed and a Weighted ARray Data-based MUSIC 

(WARD-MUSIC) algorithm is detailed. Simulations show 

the performance advantages of the WARD processing over 

other related methods in Gaussian mixture noise and 

symmetric -stable noise.

1. INTRODUCTION 

Direction-of-arrival (DOA) estimation is one of the 

important research areas of sensor array processing, which 

is drawn considerable interest for more than three decades 

(see [1] and references therein). Numerous high-resolution 

DOA estimation methods have been developed, among 

which the subspace-based methods received special 

attention. Typical well known examples of this type of 

methods include the MUSIC [2] and ESPRIT [3]. A 

common assumption made in those methods is that the array 

signals are corrupted by additive, independent and 

identically distributed (iid), Gaussian noise. Then it is 

possible to separate signal- and noise- subspaces and 

estimate the source DOAs using the second-order statistics 

of the array measurements. 

Although the Gaussian distributions and processes can 

model large types of signals and noises, in practical 

applications, the Gaussian noise assumption proves 

inappropriate [4]-[6]. The noise processes in wireless 

communication channels, underwater acoustics and other 

applications can not be well described by the Gaussian 

model [5]. These processes have been shown to be non-

Gaussian and/or impulsive, or contain outliers in nature. 

The finite Gaussian-mixture noise model [11] and the 

symmetric -stable (S S) distribution [7] are often used to 

describe those impulsive processes. 

Since the conventional methods perform poorly in 

impulsive noise environment, the development of robust 

DOA estimation methods in such noise environment 

received much attention. Some methods are claimed to work 

in different non-Gaussian noise, while some methods are 

specifically developed for certain non-Gaussian noise. The 

data-adaptive zero-memory nonlinearity (DA-ZMNL) pre-

processing method in [8] and the nonlinearly weighted least 

squares methods in [12] are general and can perform the 

DOA estimations for both noise models. The methods in [9] 

and [10] using FLOMs can be applied in the S S noise. In

[13], with the assumption of spherically symmetric array 

noise [14], a subspace-based algorithm using spatial sign 

covariance matrix (SCM-MUSIC) is derived from the 

Euclidian norm and is studied to exhibit high-resolution 

performance. Subspace-based method by the optimal 

maximum likelihood (ML) formulation and interpolation for 

Gaussian mixture noise is developed in [11]. 

In this paper, we presented a novel scheme for subspace-

based DOA estimation. Under the assumption that the noise 

has symmetric probability density function1 (pdf), we find 

that the array output can be weighted by a single weighting 

signal, so that the resulting data have the statistical 

characteristics required by the traditional subspace-based 

methods. Then the subspace-based methods can be used to 

perform DOA estimations as usual. In working example, the 

weighting scheme is used with the MUSIC algorithm and a 

Weighted ARray Data-based MUSIC (WARD-MUSIC) 

algorithm is presented. Simulations show that the WARD-

MUSIC exhibits performance superior to other related 

methods in Gaussian mixture noise and S S noise. 

In this paper, we use some notational conventions shown 

as follows 
TA = the transpose of maxtix A

A = the conjugate of matrix A
HA = the conjugate transpose of matrix A

E = the expectation operator 

2. PROBLEM STATEMENT 

1
In this paper, we assume that a complex random variable has 

symmetric pdf if its real and imaginary parts have independent, 

identically symmetric pdf.
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We assume a uniformly spaced linear array of L sensors 

receiving P narrow-band plane wave signals from far-field 

emitters with the same known center frequency and 

different directions. Then the array output vector, at the tth 

observation instant, called the tth snapshot, can be 

expressed as 

t t tx A s n  (1) 

where  is the 1P  direction vector representing the 

DOAs of the P received signals, ts  is the 1P

waveform vector of incident signals, tn  is the 1L

vector of additive noises, and A  is the direction matrix 

given by 
1 2

, , , PA a a a  with the steering 

vector, a , corresponding to the DOA , as 

2 sin 2 1 sin

1, , ,

T
d d

j j L

e ea  (2) 

where d denotes the sensor spacing and  denotes the 

wavelength.  

Our objective is to estimate the DOAs, 1 2, , , P , of 

the incident signals from the N snapshots of the array

1 , 2 , , Nx x x .

Toward this aim, we are going to make the following 

assumptions regarding the array, the signals and the noise: 

AS1 The number of signals is known and is less than the 

number of sensors, i.e.,P < L.

AS2 The set of any P steering vectors is linearly 

independent.  

AS3 The incident signals are uncorrelated zero mean 

stationary complex processes having symmetric pdfs. 

AS4 The additive noise signals are iid complex processes 

with symmetric pdfs. 

AS5 The noise and incident signals are uncorrelated. 

Note that except the assumption AS4, other assumptions 

are common in DOA estimation problems. Assumption AS4 

is general, including large types of non-Gaussian noises. 

The Gaussian noise is a special case of the assumption. For 

the Gaussian noise, the assumptions AS3 and AS4 together 

imply that the observed array data are zero-mean processes 

with the covariance matrix given by 
H H

s nE t tR x x AR A R  (3) 

where
2 2 2

1 2
diag , , ,s PR  (4) 

2

n nR I  (5) 

2
2 ( )p pE s t  denotes the variance of the pth signal, and 

2

n  is the noise power at each sensor. By exploiting the 

eigen-structure of (3), a number of subspace-based methods 

can be developed [1] .

3. THE SUBSPACE BASED DOA ESTIMATION 

USING WEIGHTED ARRAY DATA 

As mentioned above, the traditional subspace-based 

methods are not suitable when the additive noise is 

impulsive. To realize the DOA estimation using the 

subspace-based techniques, we weight array data by a 

weighting function. For array data tx , we define a 

weighting signal as 

1 2

1

max , , , L

w t
x t x t x t

 (6) 

Then the weighted array data is given by 

t w t t

w t t w t t

t t

y x

A s n

A r m

 (7) 

where
1 2

, , ,
T

Pt r t r t r tr  and 
1

( ) ,t m tm

2 ,m t ,
T

Lm t , with p pr t w t s t  and im t

iw t n t . pr t  and im t  are called as weighted signal 

and weighted noise, respectively. It is proved theoretically 

in [15] that the weighted array data for the array noise with 

symmetric pdfs have the following properties. 

P1 The weighted array signal and weighted array noise 

are of zero mean, i.e.,  

andE t E tr 0 m 0  (8) 

P2 The weighted array noises of different sensors are 

uncorrelated and have identical variances, i.e.,  
2H

mE t tm m I  (9) 

where 2

m  is the weighted noise power at each 

sensor.

P3 The weighted array signals of different sensors are 

uncorrelated and have finite variances, i.e., 
2 2 2

1 2diag , , ,H

PE t tr r  (10) 

where
22

p pE r t  denotes the variance of 

the pth weighted signal.

P4 The weighted array noises and signals are 

uncorrelated, i.e., 

1,2, ,
0,

1,2, ,
p i

p P
E r t m t

i L
 (11) 

Based on those properties, we have the following theorem. 

Theorem: The covariance matrix defined from the 

weighted array data (7) 
HE t tC y y  (12) 

is bounded and can be expressed as 
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2

H

H

H

r m

E t t

E w t t t w t

C y y

x x

A A I

 (13) 

where 2 2 2

1 2
diag , , ,H

r PE t tr r .

It is noted that (13) is similar to (3). A major advantage of 

the weighting processing is to suppress of the impulsive 

noise, and hence to enhance signal-to-noise ratio (SNR). A 

simulation examination of the property is given in next 

Section for Gaussian mixture noise. From the theorem, we 

can do subspace-based processing on the weighted data as 

usual. Here, we present a Weighted ARray Data based 

MUSIC (WARD-MUSIC) implementation of the proposed 

scheme. Given array data 1 , 2 , , Nx x x  and the 

number of signals, the WARD-MUSIC algorithm is 

comprised of the following steps: 

S1: For each time t ( 1,2, ,t N ), compute w t  and 

the corresponding ty  using (6) and (7) . 

S2: Estimate the weighted array covariance matrix by  

1

1ˆ
N

H

t

t t
N

C y y  (14) 

S3: Perform eigenvalue decomposition to the matrix Ĉ ,

and construct L L P  matrix 1
ˆ ˆ ˆ, ,n P LE e e ,

where 1
ˆ ˆ, ,P Le e  are the eigenvectors associated 

with the smallest L P  eigenvalues of Ĉ .

S4: Compute the MUSIC spectrum as 

1

ˆ ˆH H

n n

V
a E E a

 (15) 

S5: Select the angles corresponding to P peaks, which 

are the estimates of DOAs. 

4. SIMULATION 

In this section, we present simulation results to illustrate 

the effectiveness of the WARD scheme. We study the DOA 

estimation errors in Gaussian mixture noise and S S noise. 

We use a linear array with eight sensors spaced at a half 

wavelength apart. The number of signals is assumed to be 

known. In each experiment, we perform 500 Monte Carlo 

simulations.  

A. Peformace of MUSIC, SCM-MUSIC, WARD-

MUSIC, ML and CRB in Gaussian mixture noise

In the first simulation, we compare the RMSEs of the 

MUSIC, SCM-MUSIC, WARD-MUSIC, ML algorithms 

and CRB developed in [11] in the Gaussian mixture noise 

[11], with pdf 

2 2
1 1

exp , 1
L L

l
l

l ll l

zz
f z  (16) 

where l  is the probability that the complex random 

variable z is chosen from the lth term in the mixture pdf. In 

simulation, We assume two equal-strength signals coming 

from directions 10  and 15 . Fig.1(a) gives the RMSEs of 

the algorithms versus the snapshot number, the noise 

parameters selected are 2L , 2

1 1 , 2

2 1000  and 

2 0.05 . Fig1(b) gives the RMSEs of the algorithms 

versus the signal power, the selected noise parameters are 

2L , 2

1
1 , 2

2
100  and 2 0.1 , and the number of 

snapshot is 200. From Fig.1, we can see the performance of 

WARD-MUSIC is superior to the MUSIC and the SCM-

MUSIC and is close to the ML. It should be noted that the 

ML algorithm obtains the optimal performance at the cost of 

computational complexity due to the involvement of the 

expectation maximization (EM) iterations. The comparable 

performance of WARD processing to ML is due to the SNR 

enhancement. To study the signal-to-noise ratio variations 

of the array data before and after weighting, we define a 

weighted SNR (WSNR) using the weighted signals and 

noises as 

2

1

2

1

WSNR 10log

N

t

N

t

w t s t

w t n t

 (17) 

For SCM-MUSIC, 

1/ 2
2

1

L

i

i

w t x t , and for WARD-

MUSIC, w t  is defined as in (6). Here, we assume one 

signal coming at direction 10 . Fig.2 shows the SNR 

variations of the first three algorithms versus the signal 

power and 2 , respectively. It can be seen that the WARD 

processing enhances the SNR for the non-Gaussian noise.  

B. Performance of FLOM-MUSIC, ZMNL-MUSIC, 

SCM-MUSIC, WARD-MUSIC, ML and CRB in S S

noise

We now compare the performance of FLOM-MUSIC, 

ZMNL-MUSIC, SCM-MUSIC, WARD-MUSIC, ML and 

CRB in S S noise, which is usually described by its 

characteristic function given by 
t

t e  (18) 

where characteristic exponent  takes values 0< 2 , and

( > 0) is the dispersion of the distribution. The Gaussian 

process is the special case of the -stable processes for = 2.

Fig.3(a) shows the RMSEs of the algorithms for different 

characteristic exponents . Two equal-strength signals are 

coming from directions 10  and 16 . The signal power is 

assumed to be 15dB, and the snapshot number is 200. 

Fig.3(b) shows the performance of the algorithms as a 

function of snapshot number at  = 0.8. From Fig.3, we can 

find that the WARD-MUSIC algorithm outperforms SCM-

MUSIC and ZMNL-MUSIC algorithms and approaches to 
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ML and CRB in terms of RMSEs. We approximate the CRB 

for the characteristic exponents 1 2  by linear 

interpolation of the values at 1  and 2 .
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5. CONCLUSION 

In this paper, we have presented a weighted array data-

based scheme for DOA estimation in additive impulsive 

noise environments. A simple strategy for the selection of 

weighting signal is suggested. It is found that the WARD 

has the desired statistical characteristics used in the 

subspace-based DOA estimation techniques. In working 

example, a WARD-MUSIC is detailed and performance 

analyses are simulated. It is found that the WARD-MUSIC 

enhances the SNR and improves the quality of DOA 

estimates, in comparison with other related algorithms.  
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