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ABSTRACT
Mobile positioning has drawn significant attention in recent years.
In dealing with the non–line–of–sight (NLOS) propagation error,
the dominant error source in the mobile positioning, most previous
research in this area has focused on the NLOS identification and
mitigation. In this paper, we investigate new positioning algorithms
to take advantage of the NLOS propagation paths rather than can-
celling them. Based on the prior information about the NLOS path,
a least squares based position estimation algorithm is developed
and its performance in terms of root mean square error (RMSE) is
also analyzed. Furthermore, the maximum likelihood based algo-
rithm is presented to jointly estimate the mobile’s and scatterers’
positions. The Cramer–Rao lower bound on the RMSE is derived
for the benchmark of the performance comparison. Finally, the
performances of the proposed algorithms are evaluated analytically
and via computer simulations. Numerical results demonstrate that
the simulated results closely match the derived analytical results.

I. INTRODUCTION

Wireless positioning has received increasing attention over the
past decade [1]. All the positioning algorithms in the literature
assume that the line–of–sight (LOS) propagation paths exist be-
tween the mobile station (MS) and the fixed stations (FSs). In
the presence of nonline–of–sight (NLOS) propagation, the major
positioning errors result from the measurement noise and the NLOS
propagation error which is the dominant factor [2].

Thus far, most of research on NLOS errors focuses on the
NLOS error mitigation techniques, i.e., how to detect the errors
and remove their impacts [3]–[5]. However, up to the authors’
knowledge, positioning techniques which take benefit from the
NLOS propagation paths have not been considered in the open
literature. In a rich scattering environment, most of the propagation
paths between the MS and FSs are NLOS, occasionally the first
path between the MS and the home FS can be assumed as LOS.
In this paper, we present a novel positioning algorithm which takes
advantage of the NLOS paths by assuming prior knowledge about
parameters of each NLOS path. Each path is characterized by a
triple (α, β, d) where α stands for the angle of departure (AOD),
β denotes the angle of arrival (AOA), and d defines the distance
of the propagation path. To limit the scope of this paper, we do
not consider how to estimate the parameters (α, β, d) at the FS. To
summarize, the main contributions of this paper are two-fold:
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University of Oulu, EU project PULSERS and Nokia Foundation. The full
version of the paper has been submitted to IEEE Transactions on Vehicular
Technology.

1) Possible region and position of the MS: Based on the
measurement (α, β, d) of a NLOS path, we derive the possible
region of the MS. It turns out to be a line segment. The least
squares (LS) algorithm is proposed to estimate the position of the
MS in the presence of multiple NLOS paths. We assume that all
the measurements are corrupted by Gaussian noise, the root mean
square error (RMSE) of the each coordinate of the position estimate
is analyzed and compared to computer simulations.

2) Maximum likelihood algorithm and Cramer-Rao lower bound
for joint MS And scatterers position estimation: Based on the
knowledge of the parameters of multiple NLOS paths, we derive the
maximum likelihood (ML) algorithm for joint the MS’s and scat-
terers’ position estimation. The Cramer-Rao lower bound (CRLB)
for the variance of the MS position estimation is derived as well for
the benchmark of the performance comparison. The performance
of the algorithm in terms of RMSE are studied by analysis and
computer simulations.

II. SYSTEM MODEL

Upper- and lower-case boldface letters denote matrices and
vectors, respectively, (.)T denotes the transpose. Let Nf denote the
number of FSs which perceive the transmitted signal from the MS.
No LOS paths exist between the MS and any connected FS. Each
propagation path is parameterized by a triple (α, β, d), i.e., the
AOD α, the AOA β and the distance d of the propagation path
from the MS to the corresponding FS. We assume each FS has the
knowledge of the number of paths corresponding to the MS, and
parameters associated with each path. Depending on the require-
ment of the positioning accuracy and the positioning algorithm to
be performed, the proposed algorithm can be employed in either
the FS or the information processing center (IPC) which controls
several FSs, such as the radio network controller in a cellular
network. If the positioning algorithm is performed in the home
FS, only the propagation paths corresponding to that particular FS
can be utilized. On the other hand, if the positioning of the MS is
performed in the IPC, the proposed algorithm would take advantage
of the information about either all the propagation paths or only
the strongest path related to each connected FS. For simplicity, we
will focus on the situation where the positioning algorithm is run
in the IPC taking only the strongest paths corresponding to each
controlled FS into account.

III. LEAST SQUARES ALGORITHM

III-A. Algorithm Derivation

To set up the stage for the proposed algorithm, we need to find
out the possible region of the MS when the FS has the information
on the AOD α, AOA β and distance d of the strongest path.
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Fig. 1. Possible region of the MS.

However, it needs to have knowledge about the position of the
scatterer (xs, ys). As shown in Fig. 1, (xf, yf) defines the position
of the FS, r stands for the distance between the FS and the scatterer.
Therefore, the possible coordinates of the scatterer are

xs = xf + rsinβ, r ∈ (0, d),

ys = yf + rcosβ, r ∈ (0, d), (1)

and the coordinates of the MS are expressed as

x = xs − (d − r)sinα, r ∈ (0, d),

y = ys − (d − r)cosα, r ∈ (0, d). (2)

It follows by substituting (1) into (2) that the possible position of
the MS can be described as the following straight–line equation1

of the slope–intercept form

y = k(α, β)x + b(α, β, d), (3)

where

k(α, β) =
cosα + cosβ
sinα + sinβ

, (4)

b(α, β, d) = −k(α, β)(xf − dsinα) + yf − dcosα. (5)

This implies that if we have the knowledge about two propagation
paths originating from the MS, the position of the MS can be
estimated as the intersection of two lines which are derived from
(3). We assume that Nf FSs located at (xf,i, yf,i), i ∈ {1, 2, . . . , Nf}
can receive the signal from the MS. The parameter vector associated
with the ith FS is denoted by θi = (αi, βi, di)

T. Let θ =(
θ1

T, . . . , θNf
T
)T

denote the overall parameter vector estimates.
Let bi = b(αi, βi, di) and ki = k(αi, βi) denote the x-intercept
and the slope of the linear equation associated with the strongest
path received by the ith FS, respectively. To achieve the minimum
equation–error norm, the LS coordinate estimate (x̂LS, ŷLS) of the
MS can be obtained by

(x̂LS, ŷLS) = arg min
(x,y)

Nf∑
i=1

(kix + bi − y)2. (6)

1Precisely speaking, the possible region of the MS should be a line
segment instead of the line of infinite length, however the line expression
simplifies the derivation of the proposed algorithm without the loss of the
accuracy of the positioning algorithm.

It follows straightforwardly that

x̂LS(θ) =

∑Nf
i=1

bi

∑Nf
i=1

ki − Nf

∑Nf
i=1

biki

Nf

∑Nf
i=1

k2
i −

(∑Nf
i=1

ki

)2
,

ŷLS(θ) =

∑Nf
i=1

bi + x̂LS

∑Nf
i=1

ki

Nf

,

=

∑Nf
i=1

bi

∑Nf
i=1

k2
i − ∑Nf

i=1
ki

∑Nf
i=1

biki

Nf

∑Nf
i=1

k2
i −

(∑Nf
i=1

ki

)2
. (7)

III-B. Root Mean Square Error Analysis

Let αo
i , β

o
i , do

i denote the actual AODs, AOAs and distances of
the propagation paths of interest. We assume that the estimated
parameters αi, βi and di are independently Gaussian distributed
random variables [6]2, i.e., αi ∼ N (αo

i , σ
2
αi

), βi ∼ N (βo
i , σ2

βi
)

and di ∼ N (do
i , σ

2
di

). We define θo
i = (αo

i , β
o
i , do

i )
T as the

parameter vector of actual values. Let θo =
(
θo

1
T, . . . , θo

Nf

T
)T

denote the actual parameter vector of all paths. When the vari-
ances of the estimated parameters θ are small, we define σ2

i =
(σ2

αi
, σ2

βi
, σ2

di
)T, i = 1, 2, . . . , Nf, the estimated coordinates (7) of

the MS are described as

x̂LS(θ) ≈ x̂LS(θ
o) + ∇x̂LS(θ

o)(θ − θo),

ŷLS(θ) ≈ ŷLS(θ
o) + ∇ŷLS(θ

o)(θ − θo), (8)

where

∇x̂LS(θ
o) =

∂x̂LS(θ
o)

∂θT ∈ IR1×3Nf ,

∇ŷLS(θ
o) =

∂ŷLS(θ
o)

∂θT ∈ IR1×3Nf . (9)

The gradient vector ∇x̂LS(θ
o) in (8) is calculated as

∂x̂LS(θ
o)

∂αi
=

∂x̂LS(θ
o)

∂ki

∂k(θo
i )

∂α
+

∂x̂LS(θ
o)

∂bi

∂b(θo
i )

∂α
,

∂x̂LS(θ
o)

∂βi
=

∂x̂LS(θ
o)

∂ki

∂k(θo
i )

∂β
+

∂x̂LS(θ
o)

∂bi

∂b(θo
i )

∂β
,

∂x̂LS(θ
o)

∂di
=

∂x̂LS(θ
o)

∂bi

∂b(θo
i )

∂d
, i = 1, 2, . . . , Nf. (10)

As in (10), the gradient vector ∇ŷLS(θ
o) in (8) becomes

∂ŷLS(θ
o)

∂αi
=

∂ŷLS(θ
o)

∂ki

∂k(θo
i )

∂α
+

∂ŷLS(θ
o)

∂bi

∂b(θo
i )

∂α
,

∂ŷLS(θ
o)

∂βi
=

∂ŷLS(θ
o)

∂ki

∂k(θo
i )

∂β
+

∂ŷLS(θ
o)

∂bi

∂b(θo
i )

∂β
,

∂ŷLS(θ
o)

∂di
=

∂ŷLS(θ
o)

∂bi

∂b(θo
i )

∂d
, i = 1, 2, . . . , Nf, (11)

where ∂ŷLS(θ
o
)

∂ki
and ∂ŷLS(θ

o
)

∂bi
, i = 1, 2, . . . , Nf are expressed as

∂ŷLS(θ
o)

∂ki
=

x̂LS(θ
o) + P ∂x̂LS(θ

o
)

∂ki

Nf

,

∂ŷLS(θ
o)

∂bi
=

1 + P ∂x̂LS(θ
o
)

∂bi

Nf

. (12)

Let ϕ = (xo, yo)T stand for the actual position of the MS.
Therefore, the variance of the estimation error of the coordinates

2The MUSIC estimator was shown to be Gaussian distributed for
sufficiently large measurements.
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(x̂LS, ŷLS) is

E(x̂LS − xo)2 ≈ ∇x̂LS(θ
o)diag(σ2

1, . . . , σ
2
Nf

)∇x̂T
LS(θ

o),

E(ŷLS − yo)2 ≈ ∇ŷLS(θ
o)diag(σ2

1, . . . , σ
2
Nf

)∇ŷT
LS(θ

o).(13)

We denote the RMSE σLS =
√

(E(x̂LS − xo)2 + E(ŷLS − yo)2) /2
as the average RMSE of each estimated coordinate of the MS.

IV. MAXIMUM LIKELIHOOD POSITIONING
ESTIMATION AND CRAMÉR-RAO LOWER BOUND

IV-A. Joint MS and Scatterers Position Estimation

Sect. III addressed using LS algorithm to estimate the MS’
position. Indeed, all the observed parameters θ provide information
about not only the position of the MS but also the positions of the
associated scatterers. We define (xo

si, y
o
si), i = 1, 2, . . . , Nf as the

actual coordinates of the scatterers. According to Fig. 1, the real
parameter θo

i depends on the coordinates (xo
si, y

o
si) and (xo, yo) as

follows

αo
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

arc tan
xo
si−xo

yo
si
−yo xo

si ≥ xo, yo
si ≥ yo

π + arc tan
xo
si−xo

yo
si
−yo xo

si ≥ xo, yo
si < yo

π + arc tan
xo
si−xo

yo
si
−yo xo

si < xo, yo
si < yo

2π + arc tan
xo
si−xo

yo
si
−yo xo

si ≥ xo, yo
si ≥ yo

βo
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

arc tan
xo
si−xo

fi
yo
si
−yo

fi
xo

si ≥ xo
fi, y

o
si ≥ yo

fi

π + arc tan
xo
si−xo

fi
yo
si
−yo

fi
xo

si ≥ xo
fi, y

o
si < yo

fi

π + arc tan
xo
si−xo

fi
yo
si
−yo

fi
xo

si < xo
fi, y

o
si < yo

fi

2π + arc tan
xo
si−xo

fi
yo
si
−yo

fi
xo

si ≥ xo
fi, y

o
si ≥ yo

fi

do
i =

√
(xo

si − xo)2 + (yo
si − yo)2

+
√

(xo
si − xo

fi)
2 + (yo

si − yo
fi)

2 (14)

As in Sect. III-B, all the estimated parameters are assumed
to be independently Gaussian distributed random variables. We
define p (θ; xo, yo, (xo

si, y
o
si)i=1,2,...,Nf) as the parameterized joint

probability density function (PDF) of all the observed pa-
rameters. Due to the assumption that all the observed pa-
rameters are independently Gaussian distributed random vari-
ables, the likelihood function L (θ; xo, yo, (xo

si, y
o
si)i=1,2,...,Nf) =

lnp (θ; xo, yo, (xo
si, y

o
si)i=1,2,...,Nf) can be expressed as (15), By

ignoring the constant term in (15), we define the objective function
as (16). The ML based joint MS and scatterers position estimator
becomes (17).

IV-B. Cramér-Rao Lower Bound

The CRLB is the lower bound on the variance of any un-
biased estimator for unknown parameters [7]. Let us define
xo

s = (xo
s1, x

o
s2, . . . , x

o
sNf

)T, yo
s = (yo

s1, y
o
s2, . . . , y

o
sNf

)T, ψ =(
xo

s
T, yo

s
T
)

and ρ =
(
ϕT, ψT

)T
. The Fisher information matrix

(FIM) I(ρ) ∈ IR(2Nf+2)×(2Nf+2) can be expressed as

I(ρ) = E

(
∂L (θ; ρ)

∂ρ

∂L (θ; ρ)

∂ρT

)
. (18)

Therefore, the RMSE σML =√
(E(x̂ML − xo)2 + E(ŷML − yo)2) /2 of ML based positioning

estimator has the lower bound

σML ≥ CRLB =

√(
I−1(ρ)

)
11

+
(
I−1(ρ)

)
22

2
. (19)

We partition the FIM I(ρ) as follows

I(ρ) =

(
A B

BT C

)
, (20)

where

A = E

(
∂L (θ; ρ)

∂ϕ

∂L (θ; ρ)

∂ϕT

)
∈ IR2×2,

B = E

(
∂L (θ; ρ)

∂ϕ

∂L (θ; ρ)

∂ψT

)
∈ IR2×2Nf ,

C = E

(
∂L (θ; ρ)

∂ψ

∂L (θ; ρ)

∂ψT

)
∈ IR2Nf×2Nf . (21)

V. NUMERICAL EXAMPLES

This section presents analytical and simulation results to illus-
trate the performance of the proposed LS algorithm and the ML
algorithm. The positions of the MS, FSs and scatterers are given
in Table I. We assume the parameters associated to different prop-
agation paths have the same normalized estimation error variance,
i.e., σ2

αi
= σ2

α, σ2
βi

= σ2
β , σ2

di
= σ2

d, for all i = 1, 2, 3, 4.
We examine the effects of the standard deviations of estimated

parameters and the number of FSs employed on the RMSE of
the LS based positioning algorithm. When we only employ two

out of the four NLOS paths shown in Table I, there are

(
4
2

)
combinations of two NLOS paths. Different combinations may lead
to different RMSE performances, e.g., the performance yielded by
the FS pair (1, 2) could be different from that of the FS pair
(3, 4). To obtain the average performance of employing the same
number of NLOS paths, all RMSE performances under different
FS combinations are averaged out.

Fig. 2 shows the analytical RMSE performance with respect to
(σd, σβ) when σα = σβ . Fig. 3 shows the analytical and simulated
RMSE performance of the LS positioning algorithm when 2, 3 or
4 NLOS paths are exploited. It shows the effect of the number of
FSs employed along with σd when σα = σβ . All the simulations
are performed with 1000 independent runs.

Fig. 4 shows the RMSE performance of the ML based algorithm
and the corresponding CRLBs against σd. Also shown is the
performance of the LS algorithm to highlight the performance gain
of the ML algorithm over the LS algorithm. The MATLAB function
fmincon.m is employed to find the ML solution of (17). All the
simulations of the ML algorithm employ the solution yielded by
the LS algorithm as the initial searching point. It shows that the ML
algorithm does improve the performance significantly at the cost of
the increased computational complexity. It is interesting to note that
the performance of the ML algorithm is close to the CRLB. This
demonstrates that 4 NLOS paths furnished by 4 FSs are enough to
make the ML algorithm be an efficient estimator which is able to
achieve the optimal performance, i.e., the CRLB.

VI. CONCLUSIONS

In this paper, we considered the position estimation of the MS in
the NLOS scenario. With the knowledge about the AOA, the AOD
and the distance associated with each NLOS path, the LS algorithm
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L (θ; xo, yo, (xo
si, y

o
si)i=1,2,...,Nf) =

Nf∑
i=1

(
ln

1

(2π)3/2σαiσβiσdi

− 1

2

(
(αi − αo

i )
2

σ2
αi

+
(βi − βo

i )2

σ2
βi

+
(di − do

i )
2

σ2
di

))
. (15)

O (θ; xo, yo, (xo
si, y

o
si)i=1,2,...,Nf) =

1

2

Nf∑
i=1

(
(αi − αo

i )
2

σ2
αi

+
(βi − βo

i )2

σ2
βi

+
(di − do

i )
2

σ2
di

)
. (16)

(x̂ML, ŷML, (x̂MLsi, ŷMLsi)i=1,2,...,Nf) = arg min
xo,yo,(xo

si
,yo

si
)i=1,2,...,Nf

O (θ; xo, yo, (xo
si, y

o
si)i=1,2,...,Nf) . (17)

Table I. Coordinates[Meter] of the MS, FSs and scatterers
MS FS / Scatterer FS / Scatterer FS / Scatterer FS / Scatterer

(25,25) (0,50)/(40,10) (-50,0)/(-25,30) (0,-50)/(-30,-30) (50,0)/(35,-40)
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Fig. 2. Analytical RMSE versus standard deviations of distance
estimate and AOA (= AOD) estimate, 4 FSs.
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was proposed to exploit multiple NLOS paths to estimate the MS’
position. The ML algorithm was further developed to improve the
performance of the LS algorithm, and it was able to estimate the
positions of both the MS and scatterers. The CRLB was also derived
to benchmark the performance of the positioning algorithms. It was
shown both analytically and through computer simulations that the
proposed algorithms are able to estimate the MS position only by
employing the NLOS paths, and the ML algorithm can achieve the
optimal RMSE performance, i.e., the CRLB.
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Fig. 4. RMSE of the ML algorithm and the CRLB, σα = σβ = 2o.
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