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ABSTRACT

A robust Capon beamformer (RCB) with a new constraint on the
uncertainty of nominal array steering vector (ASV) is proposed in

this paper. The new constraint is constructed by replacing the nom-

inal ASV with a projected one onto the signal-plus-interference

subspace. The proposed RCB achieves higher output signal-to-
noise-plus-interference ratio (SINR) compared with the conven-

tional RCBs. Theoretical analysis and simulation results show the

effectiveness of the proposed method.

1. INTRODUCTION

Adaptive array has been studied for some decades as an attractive

solution to signal detection and estimation in harsh environments.
It is widely used in wireless communications, microphone array

processing, radar, sonar and medical imaging. A famous repre-

sentative, named Capon beamformer [1], minimizes array output

power subject to a linear constraint, known as look direction con-
straint, which ensures desired array response from a specific di-

rection. It has high performance in interference suppression if

the ASV corresponding to signal-of-interest (SOI) is known ac-

curately.

Some of the underlying assumptions on environment, source

or sensor array can be violated when adaptive arrays are used
in practical applications. This may cause mismatch between the

nominal and the actual ASVs. For adaptive beamformer, ASV

mismatch results in target signal cancellation. Some robust beam-

formers have been proposed to avoid performance degradation due
to array imperfections (See [2, 3] and references therein). How-

ever, most of these solutions only deal with steering direction er-

ror. When ASV mismatch is caused by array perturbation, array

manifold mismodelling, or wavefront distortion , these methods
cannot achieve sufficient improvement on robustness [4].

In this paper, a RCB is derived by maximizing the output
power [5–7] of the standard Capon beamformer (SCB) with re-

spect to all feasible ASVs in uncertainty set [8–11]. The resulting

RCB has similar mathematical form as the beamformer in [10,11].

Since the robustness of the beamformers in [8–11] is obtained at
the cost of reduced capability of noise/interference suppression,

the performance degradation is serious with large uncertainty set.

Hence, compact uncertainty set is appreciated to guarantee the

performance on noise/interference suppression. In this paper, we

propose a new compact uncertainty set, which is obtained by re-
placing the nominal ASV in conventional uncertainty set [10, 11]

with the projection of the the nominal ASV onto the signal-plus-

interference subspace. Theoretical analysis and simulation results

show that the SINR improvement of the proposed RCB is higher
than that of the RCBs in [10, 11].

Fig. 1: Geometry model of the uncertainty set

2. PROPOSED METHOD

2.1. Derivation of New Compact Uncertainty Constraint

Assume there are K directional signals impinging on the array.

The eigenvalue decomposition of the covariance matrix R of the

array snapshot is

R = UΓU
H

, (1)

where U is the eigenvector matrix and Γ = diag{λ1, · · · , λM}
is the eigenvalue matrix. The orthogonal bases Us of the ASVs
{sk} are obtained by extracting the eigenvectors corresponding to

the largest K eigenvalues. Us spans a linear space H ,

H = {s|s = Usc, c ∈ C
K}, (2)

where C
K is K-dimensional complex vector space. Assume that

there are two signals. Without loss of generality, H is illustrated

in 3-dimension as shown in Fig. 1. Herein, the nominal ASV s̄0

does not coincide with the actual one s0. Although the actual ASV

s0 is unknown, it locates in the space H . With this property, a
new nominal ASV ˆ̄s0 in H can be estimated to form a compact

uncertainty set with lower uncertainty level. This new ASV ˆ̄s0 is

designed as a vector in H and nearest to s̄0. It can be expressed as

ˆ̄s0 = Usˆ̄c, ˆ̄c = arg min
c

||Usc− s̄0||
2
2, (3)

where || · ||2 represents the Euclidean norm. The optimal solution

of ˆ̄s0 is
ˆ̄s0 = UsU

H
s s̄0. (4)

Since ˆ̄s0 is the projection of s̄0 onto the signal-plus-interferences

subspace H , it is straightforward that the distance between the es-
timated ASV ˆ̄s0 and the actual one s0 is shorter than that between

s̄0 and s0. The new uncertainty constraint can be formulated as

||s − ˆ̄s0||
2
2 ≤ ε

′

, (5)

where ε′ is the new uncertainty level. If ˆ̄s0 in (5) is replaced by s̄0,
the uncertainty constraint in (5) is similar to the one in [10, 11].
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2.2. Proposed Robust Capon Beamformer

If the steering vector s0 of the SOI is known, the Capon beam-

former is formulated as the following linearly constrained quadratic

optimization problem.

min
w

w
H
Rw s.t. s

H
0 w = 1, (6)

where w is the weight vector of the beamformer. The optimal

weight w0 and output power σ̂2
s of (6) is

w0 =
R

−1
s0

sH
0 R−1s0

, σ̂
2
s =

1

sH
0 R−1s0

. (7)

In real world, the ASV s0 is always unknown or known but

with some error. If the nominal ASV deviates from the true one,

target signal cancellation occurs in the Capon beamformer, and
the output power σ̂2

s in (7) decreases. A method to overcome the

problem of signal cancellation is to search for an optimal ASV

s which results in maximal output power σ̂2
s . We assume that the

true ASV s0 belongs to the uncertainty constraint set (5), the robust
beamformer can be formulated as

max
s

min
w

w
H
Rw s.t. s

H
w = 1, ||s − ˆ̄s0||

2
2 ≤ ε

′

. (8)

This optimization problem can be solved in two steps. First,

we fix s and search for the minimal output power. Then we search
for the maximal value of the minimal output power to all the pos-

sible s. For any given s, The optimization problem in (8) is sim-

plified to

min
s

s
H
R

−1
s s.t. ||s − ˆ̄s0||

2
2 ≤ ε

′

. (9)

The optimization problem (9) can be solved using the La-

grange multiplier methodology [12] Its optimal solution of (9) is

obtained on the boundary of the constraint set. The optimization

problem in (9) can be reformulated as

min
s

s
H
R

−1
s s.t. ||s − ˆ̄s0||

2
2 = ε

′

. (10)

To exclude the trivial solution s = 0 to (9), we assume that

||ˆ̄s0||
2
2 ≥ ε

′

. (11)

Define a function

f = s
H
R

−1
s + g(||s − ˆ̄s0||

2
2 − ε

′), (12)

where g ≥ 0 is the Lagrange multiplier. The optimal vector ŝ is

obtained by setting the differentiation of (12) with respect to s
∗ as

zero.
df

ds∗
= R̂

−1
ŝ + g(ŝ− ˆ̄s0) = 0, (13)

where (·)∗ is the conjugate operator. The above equation yields

ŝ = (g−1
R̂

−1 + I)−1ˆ̄s0 = ˆ̄s0 − (I + gR̂)−1ˆ̄s0, (14)

where I is the identity matrix. The Lagrange multiplier g is the

root of the constraint equation

||ŝ − ˆ̄s0||
2
2 = ||(I + gR̂)−1ˆ̄s0||

2
2 = ε

′

. (15)

It can be proved that there is a unique solution ĝ ≥ 0 of (15)

[10, 11]. So that

ŝ = (ĝ−1
R̂

−1 + I)−1ˆ̄s0 = ˆ̄s0 − (I + ĝR̂)−1ˆ̄s0. (16)

The corresponding optimal weight of the robust beamformer and

its output SINR are given by

w0 =
R̂

−1
ŝ

ŝHR̂−1ŝ
, ρ =

w
H
0 R̂sw0

wH
0 R̂nw0

. (17)

3. ANALYSIS OF OUTPUT SINR

In this section, an analysis of the output SINR of the proposed

RCB (PRCB) and the conventional RCB is carried out. Since a

complete analysis of SINR performance under general array im-
perfections represents a formidable analytical task, in this paper, a

simplified problem is discussed. We assume that only steering vec-

tor error exists in the array processor and the theoretical covariance

matrix is used. In such case, the performance degradation of the
Capon beamformer is caused by the error in the nominal ASV.

When there is only ASV error, a general conclusion on the

output SINR of the Capon beamformer is given in Lemma 1.

Lemma 1. Assume that the covariance matrices of the SOI and the
interference/noise are Rs and Rn, respectively. The covariance
matrix of array snapshot is R = Rs + Rn. When the nominal
ASV is given by s, and the true ASV is s0. The output SINR ρ of
the Capon beamformer is

ρ =
ρo cos2(θ)

1 + sin2(θ)ρo(ρo + 2)
, (18)

where θ is the extended angle between vector s and s0, and ρo is
the output SINR of the Capon beamformer when s0 is known.

cos2(θ) =
|sH

0 R
−1
n s|2

||s0||2R||s||2
R

, ρo = σ
2
ss

H
0 R

−1
n s0 = σ

2
s ||s0||

2
R,

(19)
where ||x||2R � x

H
R

−1
n x is the extended vector norm (Rn is a

positive matrix), and σ2
s is the power of the SOI. If Rn = σ2

nI,
the extended vector norm || · ||R can be replaced by the Euclidian
norm || · ||2, and

cos2(θ) =
|sH

0 s|2

||s0||22||s||
2
2

, ρopt =
σ2

s

σ2
n

||s0||
2
2. (20)

Proof. Refer to [13].

Lemma 1 indicates that the output SINR of the Capon beam-

former is determined by the angle between the nominal ASV and
the true one. Moreover, it is easy to show that the output SINR

ρ is a monotonically increasing function of cos2(θ). The PRCB

and the RCB have similar mathematical form as the Capon beam-

former except that the nominal vector s is replaced by the esti-
mated one, ˆ̄s0 or s̄0. Therefore, the output SINR of the PRCB

(RCB) can be analyzed via the angle between ˆ̄s0 (s̄0) and s0.

Lemma 2. The ASVs used in calculation of array optimal weight
for the conventional RCB [11] and the PRCB are s1 and s2, re-
spectively. According to (9) and (14), we have

s1 = (g−1

1 R̂
−1 + I)−1

s̄0, s2 = (g−1

2 R̂
−1 + I)−1ˆ̄s0, (21)

where the scales g1 and g2 are the optimal diagonal loading fac-
tors. Denoting

cos2(θ1) =
||sH

0 s1||
2
R

||s0||2R||s1||2R
, cos2(θ2) =

||sH
0 s2||

2
R

||s0||2R||s2||2R
, (22)

we have
cos2(θ1) ≤ cos2(θ2). (23)

Proof. Refer to Appendix A.

According to Lemma 1 and 2, it can be concluded that the

output SINR ρ2 of the PRCB is higher than that of the conventional

RCB ρ1, i.e.,

ρ2 ≥ ρ1. (24)
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Fig. 2: Performance comparison of the beamformers with 3
impinging sources
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Fig. 3: Performance comparison of the beamformers with 7
impinging sources

4. NUMERICAL STUDY

In this section, some numerical experiments were carried out to

evaluate the performance of the proposed RCB. An uniform lin-

ear array containing ten sensors with half-wavelength spacing is
used to enhance the SOI in the presence of strong interferences as

well as the uncertainty in the ASV. In all experiments, the nondi-

rectional noise is a spatially white Gaussian noise with unit co-

variance. The array covariance matrix is estimated with different
number of snapshots N . The output SINR is the average of 200
Monte-Carlo experiments. The performance of the SCB [1], the

RCB [10], and the eigenspace-based beamformer (ESB) [14] are

also included for the purpose of performance comparison.

The assumed direction-of-arrival (DOA) of the SOI is θ0 =
0◦. The DOA and the power of the SOI is (6◦, 10dB). The

DOAs and the powers of two interferences are (60◦, 20dB) and

(80◦, 20dB), respectively. The results in Fig. 2 show that the

PRCB has higher output SINR than others.

It is known that the performance of the projection based method

degrades when the dimension of signal-plus-interference subspace

is high. In next experiment, we include additional four interfer-

ences, whose DOAs and powers are (−30◦, 20dB), (−50◦, 10dB),

(−70◦, 20dB) and (−85◦, 20dB), respectively. The results shown
in Fig. 3 clearly indicate that the ESB has poor performance be-

cause of large error in the projected ASV due to the high dimen-

sion of signal-plus-interference subspace. The PRCB outperforms

the other beamformers in output SINR. It is also known that the
performance of the ESB strongly depends on the accurate knowl-
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Fig. 4: Comparison of the output SINR of the beamformers

versus number of snapshots with 3 impinging sources (The
dimension of signal-plus-interference subspace is overestimated

as 4. )

edge of the dimension of signal-plus-interference subspace. The

problem can be solved by using overestimate the dimension of of

signal-plus-interference for PRCB, as shown in Fig. 4.

5. CONCLUSION

A robust Capon beamformer with a new constraint on the uncer-

tainty of array steering vector is proposed in this paper. It is robust
to arbitrary error in array steering vector and demonstrates supe-

rior performance on SINR improvement. Simulations results and

theoretical analysis show that the proposed RCB outperforms the

conventional RCB in the output SINR.

A. PROOF OF LEMMA 2

Proof. Using the eigen-decomposition of R, we have

s1 = (g−1

1 R
−1 + I)−1

s̄0

= U

⎡
⎢⎢⎣

g1λ1

1+g1λ1
· · · 0

0
. . . 0

0 · · · g1λM

1+g1λM

⎤
⎥⎥⎦ U

H
s̄0

� UD1U
H
s̄0,

(25)

and

s2 = (g−1

2 R
−1 + I)−1ˆ̄s0

= U

⎡
⎢⎢⎣

g2λ1

1+g2λ1
· · · 0

0
. . . 0

0 · · · g2λM

1+g2λM

⎤
⎥⎥⎦ U

H
UsU

H
s s̄0

= U

⎡
⎢⎢⎢⎢⎣

g2λ1

1+g2λ1
· · · 0 0

0
. . . 0

...

0 · · · g2λK

1+g2λK

0

0 · · · 0 0

⎤
⎥⎥⎥⎥⎦ U

H
s̄0

� UD2U
H
s̄0.

(26)

The true ASV s0 is spanned by Us, i.e.,

s0 = Usc0 (27)
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where c0 is the coefficient vector. Assume that g1 is the optimal

diagonal loading factor for the RCB. Choosing g2 = g1, we have

s
H
0 R

−1
n s1 = c

H
0 U

H
s R

−1
n UD1U

H
s̄0

= c
H
0 U

H
s R

−1
n [Us Un]D1U

H
s̄0

= c
H
0 [K 0]D1U

H
s̄0

= c
H
0 [K 0]D2U

H
s̄0

= s
H
0 R

−1
n s2,

(28)

where K = U
H
s R

−1
n Us.

We have,

||s1||
2
R = s̄

H
0 UD1U

H
R

−1
n UD1U

H
s̄0 = v

H
D1ED1v,

||s2||
2
R = s̄

H
0 UD2U

H
R

−1
n UD2U

H
s̄0 = v

H
D2ED2v.

(29)

where

E = U
H
R

−1
n U,

v = U
H
s̄0,

(30)

The covariance matrix Rn consists of two parts, Ri and σ2
nI,

which are the covariance matrices of the interferences and back-
ground noise, respectively. Since the signal space of the interfer-

ences is a subspace of Us, Rn can be expressed as

Rn = Ri + σ
2
nI = [Us Un]

[
Di 0

0 σ2
nI

]
[Us Un]H , (31)

where the matrix Di of size K × K is not necessary a diagonal

matrix. The inverse matrix of R
−1
n can be expressed as

R
−1
n = [Us Un]

[
D

−1

i 0

0 σ−2
n I

]
[Us Un]H . (32)

Therefore,

E = U
H
R

−1
n U =

[
D

−1

i 0

0 σ−2
n I

]
, (33)

With the derived E in (33) and new definition of matrix D3,

D3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0
...

. . . 0 · · · 0

0 · · ·
g1λK+1

1+g1λK+1
· · · 0

...
...

...
. . .

...

0 · · · 0 · · · g1λM

1+g1λM

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (34)

we have,

||s1||
2
R = v

H
D1ED1v

= v
H(D2 + D3)E(D2 + D3)v

= v
H
D2ED2v + v

H
D3ED3v

= ||s2||
2
R + v

H
D3ED3v

(35)

Since D3ED3 is a non-negative Hermitian matrix, we have

||s1||
2
R ≥ ||s2||

2
R. (36)

Denoting the angles between s0 and s1 as θ1 and the angle

between s0 and s2 as θ2, we have

cos2(θ1) =
|sH

0 R
−1
n s1|

2

||s0||2R||s1||2R
≤

|sH
0 R

−1
n s2|

2

||s0||2R||s2||2R
= cos2(θ2) (37)

The optimal factor g2 should be selected to maximize cos2(θ2),

therefore, the corresponding cos2(θ2) must be greater than or equal
to cos2(θ1).
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