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ABSTRACT

The problem of mitigating Gaussian cochannel interference with un-

known spatial correlation within short array signal observation inter-

vals is addressed in this paper. We show that the classic sample

matrix inversion schemes can be represented as the projection of the

ideally combined signal onto a subspace that is uniformly distributed

on the Grassmann manifold. This brings us to a novel beamforming

scheme with enhanced mean-square error performance.

1. INTRODUCTION

Cochannel interference (CCI) mitigation is a crucial feature in wire-

less networks without stringent channel access policy. In emerging

decentralized multi-hop networks, both data and control frames sent

from peer to peer need to be very short in order to limit latency over

multiple hops, since the relaying peers normally cannot receive and

transmit simultaneously. This leads to CCI with rapidly fluctuating

characteristics in unsynchronized networks, requiring an adaptation

of the spatial filters within very limited observation intervals.

Many of the popular adaptive beamforming techniques for array

antenna-enhanced receivers, discussed in textbooks like [1, 2], rely

on an inversion of a sample covariance matrix (SCM). Their perfor-

mance depends on the sample support, i.e., the number of observed

vector samples for the SCM computation, relative to the number of

antennas. Besides, the presence of the desired signal in the sample

basis sometimes dramatically impairs the accuracy of the SCM [3].

Diagonal loading of the SCM has been shown to improve the beam-

forming performance [4, 5], however, the methods are only effective

for certain CCI constellations. With N antennas, for instance, and

N−1 similarly strong interferers constituting the spatial covariance

matrix, any diagonal loading increases the sample error variance in

the spatially filtered signal.

In this paper we present a novel beamforming scheme whose

performance compared to an ideal signal combining is independent

of the number of interferers and the spatial correlation of the CCI.

The enhanced beamforming scheme is derived in Sect. 4 following

the system model and a discussion on the classic SCM-based meth-

ods, and thereafter the complexity issue is addressed.

2. SYSTEM MODEL

Throughout the paper we use boldfaced lowercase characters for row

and column vectors and boldfaced uppercase characters for matrices.

The Hermitian transpose of X is written as XH, and [X Y] repre-

sents the horizontal concatenation of X and Y.

This work is part of ”Research and development of ultra-high speed giga-
bit rate wireless LAN systems” granted by National Institute of Information
and Communication Technology (NICT).

Assume a staggered, block-wise transmission of an information-

bearing signal over a narrow-band single-input/N -output channel. A

block comprises K data symbols. The channel gain is constant over

many blocks and perfectly known, however, the characteristics of

the CCI vary arbitrarily from block to block, and they are unknown.

Following a proper sampling of the array signal at the symbol rate,

the baseband receiver observes a block as the sequence y1, . . . ,yK

of complex N×1-vectors, where Y=[y1 · · ·yK ] is given as

Y = hs + W. (1)

The column vector h∈C
N defines the signal attenuation at the N re-

ceiver antennas, the 1×K-row vector s comprises the data symbols,

and W=[w1 · · ·wK ] includes the CCI and thermal noise (CCIN).

The interference may stem from an arbitrary number of diverse,

unsynchronized sources. It seems reasonable to model the CCIN

as temporally white, spatially correlated Gaussian: The independent

random vectors w1, . . . ,wK are CN (0,R), i.e., zero-mean circu-

larly symmetric complex Gaussian with the covariance matrix R,

and s and W are independent. The covariance matrix R depends

on the radio channels between the CCI sources and the receiver. In

environments with multipath signal propagation R is solely known

to be Hermitian positive definite.

Preambles in the form of a number of leading zeros may facil-

itate the beamforming at the receiver side. Including a preamble of

length M , the vector s comprises M zeros and K−M data symbols,

i.e., s=[0 sD]. Likewise, Y=[YP YD], where YP and YD relate

to the preamble and the data sections, respectively, of the block.

The signals from the N antennas are linearly combined prior to

the demodulation/decoding for the sake of limiting complexity. The

adaptive beamforming aims at choosing appropriate weights in order

to attain a favorable signal-to-interference-and-noise ratio (SINR) in

the combined signal. Varying SINR from block to block, due to

fluctuating CCI, can be dealt with by a forward error control (FEC)

coding and interleaving over a large number of blocks.

3. BEAMFORMING VIA SAMPLE MATRIX INVERSION

In the ideal case where the covariance matrix R of the CCIN is per-

fectly known, fMVDR =(hHR−1h)−1hHR−1 maximizes the SINR

of the linearly filtered signal fMVDRY subject to the constraint

fMVDRh = 1. The spatial filter fMVDR is usually referred to as the

MVDR (minimum variance distortionless response) beamformer.

The error in the filter output equals fMVDRW. Hence, the sample

errors are complex normally distributed with the variance

ϑMVDR =
1

K
E

[‖fMVDRW‖2] =
(
hHR−1h

)−1

, (2)

where E[·] and ‖ · ‖ denote the expectation and the 2-norm of a

row/column vector, respectively.

IV ­ 10251­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



3.1. Preamble-Based SMI Beamforming

An estimate R̂P = M−1YPYH
P of the covariance matrix is termed

SCM, and the spatial filtering by

fPSMI =
(
hHR̂−1

P h
)−1

hHR̂−1
P (3)

=
(
hH(YPYH

P )−1h
)−1

hH(YPYH
P )−1

(4)

is known as the sample matrix inversion (SMI) technique. Employ-

ing fPSMI, the conditional sample error variance of the combined

signal fPSMIYD is given as ϑPSMI = fPSMIRfH
PSMI. Both the

beamformer fPSMI and ϑPSMI are random quantities that depend

on YP. If M ≥ N , the ratio ϑMVDR/ϑPSMI is known to be beta

distributed with the parameters M−N+2 and N−1 [6]. It follows

that E[ϑPSMI/ϑMVDR] = M/(M −N +1) and, consequently, the

unconditional mean-square sample error (MSSE) equals

ϑ̄PSMI =
1

K−M
E

[‖fPSMIYD−sD‖2] =
M

M−N+1
ϑMVDR

(5)

provided that K >M ≥N . A comprehensive study on the statistical

properties of the output of this beamforming scheme is found in [7].

3.2. Data-Based SMI Beamforming

In the absence of a preamble, the SCM R̂=K−1YYH may be used

as an estimate of R, resulting in the spatial filter

fDSMI =(hHR̂−1h)−1hHR̂−1. (6)

In this approach, the sample basis for the SCM computation and

the target of the beamformer are identical. Choosing M = 0 saves

bandwidth, however, the presence of the desired signal in the sample

basis degrades the accuracy of the SCM.

If K≥N , the MSSE after this beamforming variant equals

ϑ̄DSMI =
1

K
E

[‖fDSMIY−s‖2]=
K−N+1

K
ϑMVDR+

N−1

K
εs

(7)

with εs = E
[‖sD‖2

]
/(K−M) the 2nd moment of a data symbol.

The two terms on the right hand side in (7) may be regarded as due

to the CCIN and due to the desired signal in the sample basis, re-

spectively. Both MSSE terms were derived by [8], and an alternative

way for their calculation is outlined in the Sect. 4. We note that if K
is not significantly larger than N , the presence of the desired signal

leads to a large MSSE even in situations with little interference.

4. ENHANCED BEAMFORMING

In applications with a ratio K/N not much larger than one, the above

data-based beamforming may not achieve satisfactory interference

mitigation, whereas the preamble-based variant may meet the SINR

requirements of the demodulator/decoder only at the cost of an un-

acceptable degradation of spectral efficiency. To find alternatives, let

us first make the following definitions:

• The matrix IK represents the K×K-identity matrix.

• The so-called signal blocking matrix C= [c1 · · · cN−1] is an

N × (N −1)-matrix with orthonormal column vectors, i.e.,

CHC=IN−1, such that hHC=0.

• The rows of CHY span the (N−1)-dimensional subspace B
of C

K , i.e., B=span(cH
1 Y, . . . , cH

N−1Y), and B⊥ represents

the (K−N+1)-dimensional orthogonal subspace in C
K .

.
.

. ..S

B⊥

z

P⊥
B (s)

e

s
[0 zD]

[0 ŝµ]

Figure 1: Illustration of the vector signal space CK with the subspaces S and

B⊥ for the case K =3, N =2, M =1.

• PB(x) stands for the orthogonal projection of x onto the sub-

space B, and P⊥
B (x)=x−PB(x) for the projection onto B⊥.

Using these notations, we can express the signal z = fDSMIY
obtained by the data-based SMI beamforming in the following form.

Proposition 1: The signal z= fDSMIY may be written as

z = P⊥
B (fMVDRY). (8)

That is, z may be seen as the result of an ideal combining, however,

projected onto the subspace B⊥. As a direct consequence of (8),

z = P⊥
B (s) + e (9)

= s + e − PB(s), (10)

where e=P⊥
B (fMVDRW).

Proposition 2: The subspace B⊥ is uniformly distributed on the

Grassmann manifold G(K, K−N+1) of all (K−N+1)-dimensional

subspaces of C
K . Furthermore, the subspace defining matrix CHY,

the CCIN vector fMVDRW, and the data vector s are independent.

The MSSE (7) can easily be derived from (10) using proposi-

tion 2. The two MSSE terms that make up ϑ̄DSMI correspond to

K−1E[‖e‖2] and K−1E[‖PB(s)‖2], respectively. The former ex-

pectation results from (2) and the dimension of the subspace B⊥,

while the latter equals εs scaled by the ratio of the dimension of B
over K. Adding the two expectations is permissible since the two

error terms following s in (10) reside in orthogonal subspaces.

From (9) we note that z contains no a posteriori information

about the desired signal component in the subspace B. The signal

part PB(s) is completely lost. This loss could be avoided if a priori
information about the signal s was available, for instance, if s was

known to be an element of some subspace of C
K . Let us once again

assume the inclusion of a preamble of the above described form,

thereby constraining s to a (K−M)-dimensional subspace S.

An obvious way for reconstructing s would be to choose the

element in S for which the projection onto B⊥ is nearest to z, i.e.,

zD = arg min
x∈CK−M

∥∥∥P⊥
B ([0 x]) − z

∥∥∥ . (11)

If M =N−1, the dimensions of B⊥ and S equal and P⊥
B ([0 zD])=z

with probability one (see Fig. 1).

Proposition 3: The signal zD defined in (11) corresponds to the re-

sult of the preamble-based SMI beamforming: zD = fPSMIYD.

When the largest canonical angle between the subspaces B⊥ and

S is close to 90o, the least-squares estimation (11) of the data vector
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suffers from severe noise enhancement, as can be seen in Fig. 1. To

avoid this effect, we may rather adopt a minimum mean-square er-

ror (MMSE) approach. To this end, let B represent a (K−N+1)×K-

matrix whose orthonormal rows constitute a basis of B⊥. It follows

from (9) that the signal z, written w. r. t. this basis, is given as

zBH = sDBH
D + eBH, (12)

where the (K−N+1)×(K−M)-matrix BD comprises the rightmost

K−M columns of B. The row vector eBH = fMVDRWBH in (12)

is CN (0, ϑMVDRIK−N+1) as a consequence of proposition 2 and

independent of sD. The MMSE estimator of sD on the basis of the

linear model (12) reads [9]

ŝMMSE = zBH
(
εsBDBH

D + ϑMVDR IK−N+1

)−1

εsBD. (13)

The matrices B and BD as well as z = fDSMIY can be computed

from the observation Y, however, ϑMVDR is unknown. Resorting to

some estimate µ>0 of ϑMVDR, we obtain

ŝµ = zBH
(
εsBDBH

D + µ IK−N+1

)−1

εsBD (14)

as our enhanced beamforming scheme.

To investigate the MSSE in ŝµ when M ≥N−1, we first express

the conditional sample error variance given BD. Making use of the

singular value decomposition of BD and some algebra leads to

1

K−M
E

[
‖ŝµ−sD‖2

∣∣∣ BD

]
=

εs

K−M

K−M∑
i=1

µ2 + εsv
2
i ϑMVDR

(εsv2
i + µ)2

,

(15)

where v1, . . . , vK−M denote the singular values of BD. Integrating

over the density p(q) of the random vector q = [v1 · · · vK−M ] with

the (zero or) positive singular values yields the unconditional MSSE

ϑ̄µ = (K−M)−1E
[‖ŝµ − sD‖2]

=
εs

K−M

∫
q∈R

K−M
+

K−M∑
i=1

µ2 + εsv
2
i ϑMVDR

(εsv2
i + µ)2

p(q)dq. (16)

A closed-form expression for ϑ̄µ is not available1, however, we can

make the following statements:

1. As a consequence of the uniform distribution of B⊥ on

G(K, K−N +1), the distribution of the singular values de-

pends only on K, N , and M . Similar to ϑ̄PSMI and ϑ̄DSMI,

the MSSE performance ϑ̄µ of the enhanced beamforming

thus depends on (h, R) only via ϑMVDR.

2. For any given (sD,h,Y), the MMSE estimate ŝµ tends to zD

as µ approaches zero. In the same time, the MSSE ϑ̄µ tends

to ϑ̄PSMI.

3. Via partial derivation of (15) w. r. t. µ we find that ϑ̄µ has only

one minimum within µ∈ (0,∞), namely at µ=ϑMVDR. As

a consequence of statement 2, ϑ̄ϑMVDR ≤ ϑ̄PSMI.

4. The above result can be extended as follows:

Proposition 4: If µ∈(0, 2ϑMVDR] then ϑ̄µ≤ ϑ̄PSMI.

1The singular values actually relate to the cosines of the canonical angles
between the subspaces S and B⊥. The joint density of the singular values is
formulated in [10], theorem 3. 3. 4., for the corresponding real case.
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Figure 2: Performance comparison of the preamble-based SMI beamforming

and the enhanced beamforming scheme versus the parameter µ.

We shall now discuss some exemplary transmission scenarios.

First, assume that the receiver employs N = 4 receive antennas, a

block comprises K =16 samples, of which the first M =4 symbols

constitute the preamble, and that an ideal filtering would achieve

an MSSE of 8, 12, or 15 dB below the desired signal power. Fig. 2

compares the respective SINRs after a preamble-based SMI beam-

forming (according to (5)) and after the enhanced beamforming as a

function of µ. The numerically evaluated εs/ϑ̄µ are in line with the

above statements 2–4. Obviously, the enhanced beamforming with

the optimal choice µ = ϑMVDR achieves gains of more than 4 dB

over the classic beamforming when εs/ϑMVDR equals 8 dB.

It arises the question of how µ should be chosen without prior

knowledge about the amount of interference. With the CCI vary-

ing from block to block and an FEC coding over a large number of

blocks, the decoder requires a certain average SINR for reliable in-

formation recovery. Choosing µ around this known average SINR

seems reasonable, since this lets the blocks with above-average CCI

(i.e., large ϑMVDR) always benefit from the enhanced beamform-

ing. The classic preamble-based SMI beamforming becomes only

superior in the blocks with little interference (small ϑMVDR) due to

statement 4, however, these have minor impact on the average SINR.

This can be seen in Fig. 3, showing the achieved SINRs in a sce-

nario with N = 4, K = 16, and either M = 4 or M = 5 preamble

symbols, versus the SINR εs/ϑMVDR by an ideal combining. The

parameter µ is set to 12 dB below the desired signal power. Obvi-

ously, the enhanced scheme is superior unless the SINR εs/ϑMVDR

exceeds 16 3
4

and 18 1
2

dB, respectively. The figure further shows

the performance of the data-based SMI beamforming as given in (7),

outperforming the other adaptive schemes at very low SINRs.

5. IMPLEMENTATION

The classic SMI schemes involve an inversion of the N×N -SCM,

whereas (14) contains the inverse of a matrix of dimension K−N+1.

The gain in MSSE performance thus comes at the cost of a consid-

erable increase in computational complexity if ŝµ was computed ac-

cording to (14). There are, however, more favorable methods for

obtaining ŝµ. For any B⊥, the matrix B can assume the form

B =

⎡⎣ u v
U V
0 X

⎤⎦ with

[u v] = P⊥
B (hHY)/‖P⊥

B (hHY)‖,
U : an M×M -matrix,
V : an M×(K−M)-matrix,
X : a (K−N−M)×(K−M)-matrix.
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Figure 3: Performance of the various beamforming schemes versus the SINR

by an ideal combining, choosing εs/µ equal 12 dB.

Now, zBH in (14) simplifies to
[‖P⊥

B (hHY)‖/‖h‖2 0 · · · 0
]

and(
εsBDBH

D + µ IK−N+1

)−1

=

[
G 0
0 (εs+µ)−1IK−N−M

]
(17)

with

G =

(
(εs + µ)IM+1 − εs

[
u
U

] [
u
U

]H
)−1

. (18)

Finally, the result of the enhanced beamforming can be expressed as

ŝµ =
(∥∥∥P⊥

B (hHY)
∥∥∥ /

‖h‖2
)
g

[
v
V

]
(19)

with g denoting the first row of G.

Hence, only the upper M +1 rows of B need to be computed.

These actually correspond to the rows N to N+M of the matrix Q
resulting from the LQ-decomposition

LQ =

⎡⎣ CHY
hHY
[IM 0]

⎤⎦
(with L left-triangular and QQH = IN+M ). The scalar preceding g
in (19) corresponds to the N th diagonal element in L, and g is the

first row of the inverse of the matrix (18) of dimension M+1.

6. CONCLUSION AND OUTLOOK

A novel beamforming scheme has been proposed, featuring better

adaptive CCI suppression on short signal intervals than the classic

preamble-based SMI beamforming methods. The enhanced scheme

has turned out to reduce the gap to the SINR εs/ϑMVDR attained

by an ideal signal combining based on perfectly known spatial co-

variance, over a large range of ϑMVDR. Unlike diagonal loading

techniques, the performance gain is independent of the particular

structure of the CCI.

The enhanced beamforming turns out similarly superior to the

classic SMI methods with/without diagonal loading in scenarios with

look direction mismatches, i.e., mismatches in h. This issue will be

discussed in an upcoming paper.

APPENDIX

Proof of proposition 1:
Using first (6) and (‖h‖−2hhH +CCH) = IN , and second the

identity (hHX−1h)−1hHX−1C = −‖h‖−2hHXC(CHXC)−1,

which holds for any non-singular N×N -matrix X,

fDSMIY=(hHR̂−1h)−1hHR̂−1(‖h‖−2hhH+CCH)Y (20)

=‖h‖−2hHY−‖h‖−2hHR̂C(CHR̂C)−1CHY.(21)

Expanding R̂ as R̂ = K−1YYH and using that CHh = 0 leads to

fDSMIY=P⊥
B (‖h‖−2hHY), and furthermore

fDSMIY = P⊥
B (fMVDRY + (‖h‖−2hH − fMVDR)Y) (22)

= P⊥
B (fMVDRY) + (23)

P⊥
B ((‖h‖−2hH−fMVDR)(‖h‖−2hhH+CCH)Y).

The second line of (23) equals zero as (‖h‖−2hH−fMVDR)h = 0
and since (· · ·)CCHY is in the subspace B.

Proof of proposition 2:
The subspace B⊥ is uniformly distributed on G(K, K−N+1) since

span{cH
1 Y, . . . , cH

N−1Y}=span{cH
1 W, . . . , cH

N−1W} and CHW
does not change its distribution if post-multiplied by some unitary

K×K-matrix. The subspace defining matrix CHW and the CCIN

vector fMVDRW are independent because the columns of W are in-

dependent Gaussian and fMVDRRC=0. And the independence of

CHW, fMVDRW and s follows from the independence of W and s.

Proofs of propositions 3 and 4: Left to the interested reader.
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