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ABSTRACT

The output SINR achieved via Indirect Dominant Mode Re-
jection (IDMR) beamforming is substantially higher than the
achieved with other beamforming algorithms. IDMR is based
on a parametric estimate of the covariance matrix which is
obtained using an estimate of the directions of the dominant
sources and assuming that the array manifold is available. In
most applications the array manifold is not known precisely
and performance of IDMR can be deteriorated. The focus of
this paper is to enable the IDMR beamformer to operate in a
scenario of direction-independent steering vector mismatch.
A modified version of an algorithm introduced by Friedlan-
der is employed to estimate the direction-independent mis-
match. Thereafter IDMR is implemented. Simulation analy-
sis reveals that this technique enables IDMR to operate in a
scenario of direction-independent manifold mismatch.

1. INTRODUCTION

It is well know that under low sample support the Minimum
Variance Distortionless Response (MVDR) beamformer is non
optimal [1] and low-rank MVDR based beamformers such as
Principal Component Inverse (PCI), Dominant Mode Rejec-
tion (DMR), Conjugate Gradients (CG) can yield a higher
output SINR than the full-rank MVDR beamformer. How-
ever, the output SINR obtained with these low-rank beam-
formers depends on the rank of operation and there is not yet
an effective rule to select the optimal rank [2]. In [3] we in-
troduced the IDMR beamformer which uses a parametric es-
timate of the covariance matrix to cancel the correlation be-
tween the desired signal and the interference. Due to finite
sample averaging, residual correlations between sources are
present in the sample covariance matrix, causing a degrada-
tion in the performance of MVDR based beamformers. Sim-
ulation analysis revealed that the output SINR obtained with
the IDMR beamformer can be substantially higher than the
obtained with PCI, DMR and CG.

The IDMR beamformer is based on a parametric estimate
of the covariance matrix which is obtained assuming knowl-
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edge of the array manifold and using MUSIC to identify the
location of the dominant sources. Since knowledge of the
array manifold is required to form the covariance matrix, the
IDMR beamformer has its performance deteriorated if there is
steering vector mismatch. Steering vector mismatch is classi-
fied in two different types: direction-independent mismatch
which equally affects signals arriving from different direc-
tions and direction-dependentmismatch which affects signals
arriving from different directions in different ways. The work
presented in this paper is focused on a technique to enable
the IDMR beamformer to operate in a scenario of direction-
independent array manifold mismatch.

It is proposed in this paper to use an algorithm introduced
by Friedlander in [4] to estimate the direction-independent ar-
ray manifold mismatch. Friedlander’s algorithm proposes to
estimate the mismatch vector with the objective of making
the signal steering vectors orthogonal to the noise subspace.
In this paper the researchers show that only the steering vec-
tor associated with the dominant signals are to be used and
that the algorithm fails to estimate the mismatch vector when
non dominant signal steering vectors are used.

Once an estimate of the steering vector mismatch is avail-
able IDMR is then implemented accounting for the steering
vector mismatch. Simulation analysis reveal that this tech-
nique enables the IDMR beamformer to operate in a scenario
of direction-independent manifold mismatch. In this scenario
the output SINR obtained with IDMR is substantially higher
than the output SINR obtained with either DMR or CG.

2. REVIEW OF IDMR

Consider an array of m sensors receiving signals from k sources
of emission at directions θi. i = 1, . . . , k with respect to the
array. It is assumed that the desired source is narrow-band
and that narrow-band filtering about the center frequency of
the desired source, fo, occurs at the front end of the receiver
such that the k − 1 interfering signals are narrow-band and
co-located in frequency with the desired signal at the beam-
former input.
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The true covariance matrix R has the form

R = APA
H + σ2

nI, (1)

where A is called the signal direction matrix (SDM) and is

given by A = [a(θ1)
... a(θ2)

... . . .
... a(θK)], where a(θi)

i = 1, ..., k are the steering vectors associated with the direc-
tions θi of the k signal sources. The matrix P is the source-
signal correlation matrix, where σ2

i is the ith element along
the main diagonal and is equal to the power of the signal ar-
riving from the direction θi. σ2

n is the power of the spatially
and temporally white Gaussian noise. I is the m×m Identity
matrix.

Eqn. (1) can be rewritten as:

APA
H = R − σ2

nI. (2)

Multiplying the left hand side of the equation above by the
pseudo-inverse A

† = (AH
A)−1

A
H , and multiplying the

right hand side by A
†H yields:

P = A
†(R − σ2

nI)A†H . (3)

MUSIC or other direction estimation algorithm is applied
to the sample covariance matrix R̂ to estimate the signal di-
rections. Subsequently, the SDM denoted by Â is formed
from the estimated signal directions, given the known form
of the array manifold. Â along with the sample covariance
matrix R̂ and an estimate of the noise power σ̂2

n, is used to
estimate the source-signal correlation matrix P̂ according to
Eqn. (3). The elements not along the main diagonal of P̂,
arising from residual correlations between sources due to fi-
nite sample averaging (or even due to true correlation between
sources) are discarded, giving rise to a diagonalized source-
signal correlation matrix estimate denoted P̂d. Substituting
Â, P̂d, σ̂2

n into Eqn. (1) yields a parametric estimate of the
covariance matrix denoted by Ridmr, where the contributions
due to correlations among sources are removed. The MVDR
beamformer associated to the direction θ is then formed using
Ridmr as

w(θ) =
R

−1

idmra(θ)

aH(θ)R−1

idmra(θ)
. (4)

It has been observed that when refining the estimate of the
correlation matrix, it is better to discard the signal that is to
be extracted. This occurs because when we are estimating the
signal direction there is an embedded mismatch to the true
direction of the signal. Therefore, if the desired signal is used
in the estimate the parametric covariance matrix the resulting
beamformer may have a null in the direction of the desired
signal. In this case the desired signal would be taken as an
interferer. A simple way to avoid the desired signal in the
refined correlation matrix is to disregard any signal within a
certain distance of the look-direction θ.

The underlining idea of the Indirect-DMR technique is to
form a parametric estimate of the correlation matrix with ac-
curate information on the location and power of the dominant

interferers. With this parametric estimate of the correlation
matrix the MVDR beamformer allocates nulls at the positions
of the interferes and the resulting beamformer is then used
to extract the desired signal. It is important to note that low
power interferers can be discarded when forming the para-
metric correlation matrix Ridmr. This because low power
interferers do not play a critical role in the total interference
and, in most situations, it is difficult to detect and accurately
locate their positions.

3. ESTIMATION OF DIRECTION-INDEPENDENT
STEERING VECTOR MISMATCH

Let a(θ) be the m× 1 nominal steering vector for a signal ar-
riving at the array from the direction θ, where m is the number
of sensors. Assuming the presence of a steering vector mis-
match which is independent of the direction θ the true steering
vector ã(θ) is given by

ã(θ) = γ � a(θ)

= Γa(θ), (5)

where � is the Hadamard product, γ is the m × 1 array mis-
match vector and Γ is a diagonal matrix where the diagonal
is γ.

Each component of γ represents a complex gain for each
array element. The gain at each sensor needs to be estimated
in relation to the gain of a reference sensor. Therefore, with-
out loss of generality the reference sensor is assumed to be
the first array element. Consider U to be the matrix which
columns ui are the noise eigenvectors of the sample covari-
ance matrix R̂.

A direction finding algorithm such as MUSIC is employed
to obtain a first estimate of the directions of the n domi-
nant signals arriving at the array. The corresponding nominal
steering vector aj , j = 1 . . . n are computed.

The algorithm consists of minimizing the projection of the
steering vectors into the noise subspace:

min
Γ

p∑
i=1

n∑
j=1

|ui(Γaj)|2

s.t. γHδ = 1 (6)

where Γ = diag(γ) is a m × m diagonal matrix which the
diagonal is the array mismatch vector γ, p is the estimated
dimension of the noise subspace, and δ = [1 0 0 ... 0]T . The
constraint γHδ = 1 guarantees that the first sensor is the
reference sensor and thus has a unity gain. We note that Eqn.
(6) is valid when s is underestimated, however it is not valid
when p is overestimated. Therefore we observe that it is better
to underestimate rather than to overestimate p. We can write
the objective function of Eqn. (6) as:
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min
Γ

p∑
i=1

n∑
j=1

|uH
i (Γaj)|2 =

min
Γ

p∑
i=1

n∑
j=1

(Γaj)
H
uiu

H
i (Γaj) =

min
Γ

n∑
j=1

(Γaj)
H

[
p∑

i=1

uiu
H
i

]
(Γaj) =

min
Γ

n∑
j=1

(Γaj)
H
UU

H(Γaj) =

min
γ

n∑
j=1

(diag(aj)γ)H
UU

H(diag(aj)γ) =

min
γ

n∑
j=1

γHdiag(aj)
∗
UU

Hdiag(aj)γ =

min
γ

γH

⎡
⎣∑

j

diag(aj)
∗
UU

Hdiag(aj)

⎤
⎦γ (7)

Defining the matrix

Z =

⎡
⎣ n∑

j=1

diag(aj)
∗
UU

Hdiag(aj)

⎤
⎦ (8)

the problem can be re-stated as:

min
γ

γH
Zγ (9)

s.t. γHδ = 1

The solution of the above minimization problem is well
known and is given by:

γ =
Z
−1δ

δ
H
Z−1δ

(10)

The algorithm to estimate the sensors gain vector can be
summarized as:

i. Using the sample covariance matrix and the nominal
values of the steering vectors, MUSIC is applied to es-
timate the directions of the dominant signals.

ii. The sensors’ gain vector γ is estimated with the objec-
tive to minimize the projection of the dominant signal
steering vectors into the noise subspace.

iii. Go back to step i replacing the nominal steering vec-
tor by the corrected steering vector. Stop the algorithm
when γ converges.

4. SIMULATIONS

Simulations were conducted employing a uniform and linear
array of m = 24 elements with half-wavelength spacing re-
ceiving plane-wave signals. The noise at each array element is
spatially and temporally white Gaussian. The incident signals
are modeled as narrowband with amplitudes modeled as com-
plex Gaussian random processes. The scenario is composed
of 12 uncorrelated incident signals with arrival directions (in
degrees) and respective SNRs (in dB) at each array element
as shown in Table 1. The array mismatch gain at each array
element was modeled as a complex Gaussian random vari-
able with a standard deviation of σn = 0.5 centered at 1+ j0.
That is, the real and imaginary parts are independent and have
a standard deviation of 1/

√
8. To estimate the covariance ma-

trix 24, snapshots were used.

Angle SNR
6.8 30.0

-34.7 29.4
47.9 29.0
11.8 28.0
-69.7 22.7
19.8 21.5
-41.5 20.0
-46.6 19.6
-50.9 11.9
24.2 11.2
86.9 10.7
0 10.0

Table 1. Direction and SNR of incident signals.

It can be observed that different values of the number of
dominant signals, n, may be used in Eqn. (6). This is the
total number of dominant steering vectors that will be made
orthogonal to the noise subspace by multiplying these steering
vectors by the mismatch gain vector γ. Simulations were
performed with either 5 or 10 dominant signals. Simulations
reveal that using 5 dominant signals yields better estimates of
γ than when using 10 dominant signals.

Fig. 1 shows the real and imaginary parts of each com-
ponent of the estimated mismatch gain vector γ. The black
circle indicates the region within one standard deviation of the
mean 1 + j0. The vector has 24 components; the first com-
ponent is deterministic with a value of 1 + j0. The imaginary
part of each component is plotted on the Y axis, and the real
part on the X axis. The true values of each component are
marked with an “X”; the first estimate is marked with an “o”
and the final estimate after 6 iterations is marked with a “*”.

After estimating the sensor mismatch vector γ the IDMR
beamformer was employed using the estimates of γ to cor-
rect the nominal value of the steering vectors. Figs. 2 and 3,
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for n = 5 and n = 10, respectively plot the average output
SINR over 200 simulation runs obtained with IDMR when γ
is estimated. Curves obtained when the true value of the mis-
match is employed and when the mismatch is not estimated
are also plotted. It can be observed that performance of IDMR
is severally degraded if the mismatch is not accounted for. For
comparison reasons the output SINR obtained with CG and
DMR are also plotted. Two curves are plotted for CG and
two for DMR. In one curve the mismatch is ignored and in
the other the true value of the mismatch is taken into account.
It can be observed that both CG and DMR are less sensitive
to the mismatch than IDMR. However, when the mismatch
is estimated IDMR yields a significantly higher output SINR.
From Fig. 3 it can be observed that if 10 dominant sources are
used in Eqn. (6) the estimates of the mismatch are less accu-
rate and performance is degraded. The degradations is caused
by the fact that there are higher errors made in the estimated
directions when less dominant sources are used in Eqn. (6).
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Fig. 1. γ̂.
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Fig. 2. Output SINR using 5 dominant signals.
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Fig. 3. Output SINR using 10 dominant signals.

5. CONCLUSION

To enable the IDMR beamformer to operate in a scenario of
direction-independent steering vector mismatch an iterative
algorithm to estimate the referred mismatch was proposed.
This algorithm is a modified version of an algorithm proposed
by Friedlander. It was shown that in order to properly esti-
mate the mismatch vector, accurate estimates of the angles of
the dominant sources must be available. Simulation analy-
sis revealed that IDMR may be applied in conjunction with
the algorithm proposed herein to circumvent steering vec-
tor mismatch. Simulations also revealed that in a scenario
of direction-independent steering vector mismatch the output
SINR obtained with IDMR is significantly higher than the ob-
tained with either DMR or CG.
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