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Campus de Beaulieu - 35042 Rennes Cedex - France

smaria@irisa.fr, fuchs@irisa.fr

ABSTRACT

The Global Matched Filter (GMF) is a mean to solve simul-
taneously detection and estimation problems. It has been applied
mainly in source localization and delay estimation problems where
the amount of data to be handled is reasonably small. This is not the
case in the Space Time Adaptive Processing (STAP) context where
the amount of data is extremely large and constitutes probably the
major challenge. We present a very efficient algorithm that allows
to apply the GMF to problems having several thousands unknowns.
This allows its application to the STAP data. We detail both the algo-
rithm and the implementation of the GMF to the STAP data. Since
the GMF is a high resolution technique it outperforms the algorithms
that are traditionally used in this context.

1. INTRODUCTION

The Global Matched Filter (GMF) has been proposed in [1] as a
mean to solve simultaneously detection and estimation problems. It
can also be seen as allowing to solve linear inverse problems when
it is known a priori that the input is a train of spikes. Similar ap-
proaches had been proposed somehow earlier [2, 3, 4]. It belongs
to the global topic of sparse representation that has been active in
the signal processing community [5] for almost ten years now. This
topic has known a new start recently [6, 7] in applied mathematics
where deterministic and much easier problems amenable to clear so-
lutions were introduced. Simultaneously its connection with long
standing problems in statistics such as Matching Pursuit [8], or step-
wise regression [9] has been recognized and it is now an active do-
main of research in all these different communities [10, 11].

When applying these sparse representation techniques or sim-
ilarly the GMF to practical situations one faces the computational
complexity issue, hence the necessity to develop new algorithms
allowing to handle larger problems in reasonable time. We de-
velop here such an algorithm that allows to solve the GMF crite-
rion for problems having up to

� � � � �
unknowns in a few seconds on

a standard desk computer. Similar algorithms have been proposed
in the statistics literature under the name Least Angular Regression
(LARS) [11, 12] and presented to the signal processing community
in [10].

In order to demonstrate the performance of the algorithm, we
apply it to the Space Time Adaptive Processing context [13]. We
indicate how the problem of the detection of targets in the presence
of clutter and noise can be handled by the GMF and solved in rea-
sonable time.

In Section 2, we relate the GMF approach to more recent results
in the sparse representations domain. In Section 3 we detail the ef-
ficient algorithm that solves the criterion used by the GMF. Then, in

Section 4, we adapt the basic STAP problem to the GMF technique
and present simulation results that allow to assess the potentialities
of the approach.

2. PRELIMINARIES

2.1. The Global Matched Filter

The Global Matched Filter (GMF) applies to any situation where an� -dimensional observation vector � can be represented as the sum of
a small and unknown number of elements of a parameterized family
in additive noise:

� �
	
 � � � � � � � � � �

(1)

where � is the unknown number of components to be estimated to-
gether with

� �
, the values of the scalar or vector of parameters and� �

the associated weights. The idea is then to replace the maximum
likelihood approach which if

�
is Gaussian amounts to solve the non-

linear least squares problem

� ! #$ & ( * & + � - 	
 � � � � � � � � + //
for different values of � , by a single convex program having a large
number of unknowns as follows.

One uniformly discretizes the
�

parameter values in its domain
of interest and constructs with the 0 columns

� 1 � � � � 1 �
-with

� 1
on the regular grid- a matrix 3 having thus far more columns than
rows ( 0 5 � ). And, one solves the following quadratic program� ! #* �6 + 3 � - � + //

� 8 + � +
�

9 8 ; �
(2)

for an adequately chosen parameter
8
. The <

�
-norm penalty term

ensures the sparsity of the solution. A physical interpretation can be
given to the dual of this criterion [1]� ! #* + 3 � + // subject to + 3 ? � 3 � - � � + A C 8
which is also equivalent to� ! #* + � +

�
9 subject to + 3 � - � + // C F (3)

2.2. The sparse representation approach

In the recent literature [6, 14, 15] on sparse representations, the ini-
tial main concern was to obtain precise conditions under which it
is possible to recover an exact sparse representation from the sole
knowledge of the observation vector � . By assuming that � � 3 � J
with

� J
a sparse vector having thus just a few non zero components,

one seeks conditions under which
� J

is the unique optimum of an
easy to solve convex program. Indeed since seeking the sparsest
representation of � � 3 � J

requires a combinatorial search over all
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potential solutions that is infeasible in practice, one considers instead
the so-called �

�
-sparsity and solves� � �� � 	 �

�
s.t. � 
 � � 	

(4)

with � 	 �
�

� � � � � 	 
 �
, which can be transformed into a linear pro-

gram. One then analyses under which condition on
	 �

the true ex-
act representation is the unique solution to (4). The answer is now
known but is extremely conservative and thus essentially useless in
practice. The trend is now to analyze the same problem when ad-
ditive noise is present, i.e., when 
 � � 	 � � �

. Some results are
available essentially when the noise vector is � � -bounded [16, 17].
The idea is to replace the exact reconstruction constraint � 	 � 
 in
(4) by an approximate reconstruction constraint � � 	 � 
 � �� � � in
(3) or equivalently to solve (2), the criterion used in the GMF.

3. THE OPTIMIZATION ALGORITHM

The problem (2), which is convex unconstrained but non-smooth,
can be converted into a quadratic program [18] and thus solved us-
ing existing subroutines. Here we propose to describe an algorithm
specifically designed to solve (2) that has a far lower computational
cost.

3.1. Optimality conditions
Mainly to simplify the exposition we will assume in the sequel that
(2) has a unique optimum, this is probably generically true in ap-
plications. To develop the algorithm we need to state the necessary
and sufficient conditions (NSC) satisfied by the optimum of (2) in
a precise way that is most easily obtained by introducing the sub-
differential of � 	 �

�
[18], a set of vectors called the sub-gradients,

denoted � � 	 �
�
,� � 	 �

�
� � 
 � 
 � 	 � � 	 �

�
� � 
 � � � � �

� � 
 � 
 � � sign
� 	 � �

if
	 � �� �

and

� 
 � �
� �

otherwise
� �

where
	 �

denotes the � -th component of
	
, and sign

� 	 � � � � �
is

well defined since
	 � �� �

. The following result then holds [15].
Theorem 1: The point

	 �
is a global minimum of (2) if and only if

the vector zero is a sub-gradient of the criterion at
	 �

, i.e.:� 
 � � � 	 �
�
such that � � � � 	 � � 
 � � " 
 � �

. (NSC) �
Relation (NSC) is an implicit equation that is difficult to solve. There
is a unique couple � 	 � � 
 �

where 
 is a sub-gradient of � 	 �
�

at
	 �

that satisfies this equation and only a lengthy combinatorial search
could lead to it.

One can show [15, 1] that if
" � � � � 
 � � , the unique optimum

is at the origin, while otherwise the optimum of (2) is a function of"
that has at most $ non zero components. To learn more about

	 �
we split it into its non zero components we denote  	 �

and its zero
components we denote   	 �

, we accordingly split the associated sub-
gradient 
 and the � matrix, one then has, e.g., � 	 � �  �  	 �

. One
can then split the % equations in (NSC) into two parts � � � 
 �  �  	 � � � "

sign
�  	 � � � (5)  � � � 
 �  �  	 � � � "   
 � �

To get the first part we use the fact  
 � � sign
�  	 � �

. From the first
equation we now deduce an expression for  	 �

which we write  	 � " �
to emphasize the dependency on

"
, and substituting  	 �

in the second
part yields an explicit expression for   
 � " �

:

 	 � " � �  � $ 
 � " �  � �  � � & �
sign

�  	 � " � � � (6)  
 � " � � �"   � � 
 ( �   � � * �

where 
 ( � � , �  �  � $ � � 
 is the projection of b on the subspace or-
thogonal to the range of  � and * �  � $ � sign

�  	 � " � �
with  � $ � the

transpose of the pseudo-inverse of  � .
Remember that the equation (NSC) is useless as such. If a solu-

tion i.e., a couple � 	 � � 
 �
or more precisely � 	 � " � � 
 � " � �

is known,
for a given and fixed value of

"
, it can however be used to obtain the

expressions in (6) that are valid within an interval around the initial"
. This means that the expressions of  	 � " �

and   
 � " �
in (6) when

complemented by   	 � " � � �
and  
 � " �

=sign
�  	 � " � �

yield a couple� 	 � " � � 
 � " � �
that is optimal not just for the initial value of

"
but

over a whole interval. Indeed it is valid as long as no component
in  	 � " �

becomes zero (which generally occurs when one increases"
) or a component in   
 � " �

becomes equal to � �
(which generally

occurs when one decreases
"
).

Since moreover the boundaries of the so-defined interval in
"

are
easy to obtain and the modification to be introduced in the equations
(5) or equivalently (6) to cross a boundary are simple as well, we
are ready to write the algorithm generating the optimal

	 � " �
as

"
varies, provided we know how to initialize this procedure. But this
also is trivial since we know that for

" � � � � 
 � � , the optimum is
at the origin and that for a slightly smaller value of

"
, within the first

interval, the index and the value of the single non zero component in	 � " �
are easy computable. These observations have first been done

in [12] in a slightly different form.

3.2. The algorithm

We construct the optimum
	 � " �

of (2) or more precisely its non-
zero components  	 � " �

as
"

decreases, i.e., we construct a sequence
of adjacent intervals - " . 0 23 4 5 � " . 0 27 9 : < with

" . 0 27 9 : � " . 0 & � 23 4 5 for increas-
ing > within which  	 � " �

and   
 � " �
are given by the expressions in (6)

with  � �  � . 0 2
, sign

�  	 � " � � � @ . 0 2
and * . 0 2 �  � . 0 2 A C @ . 0 2

. One
stops when, say ,

" �
the value of

"
for which the optimum is sought

belongs to the current interval. We describe below how to find the
boundaries of the intervals and how to reactualize the different quan-

tities, % . 0 2
is the number of columns in   � 0

.D Initialization

– If
" � - � � � 
 � � ,

	 � � �
, stop the algorithm,

– elseF � . � 2 � . H I � K L � � �
� � 


� � �
,F  � . � 2 � - . � N O Q < ,   � . � 2 � � S . � N O Q

, % . � 2 � % � �
,F @ . � 2 � sign

� � � � 
 � � N O Q �
,F " . � 27 9 : � � � � 
 � � .D > -step of the algorithm

Search for
" . 0 23 4 5 � " . 0 $

� 27 9 : :

- Case 1: a component in   
 becomes equal to � �
with asso-

ciated value
" . 0 2�

of
"
:

For V � � � / � � � � % . 0 2
and W � � �

or � �
, compute:

X . Y � 
 � W � � W �   � . 0 2 � 
 ( . 0 2 � 

� � W �   � . 0 2 � * . 0 2 � 
 �

[ � � % * . 0 2�
� W . 0 2� � � . H I � K L 
 0 ] � X . Y � 
 � W � �" . 0 2�

� X . Y � . 0 2� � ^ O � W . 0 2� � �
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- Case 2: a component in ��
becomes equal to

�
with associ-

ated value
� � � �

� . For � � � � � � � � � 	 - 	 � � �
:
 
 � � � �

� �
 � � � 
 � � �
� � �
 � � � � �
 � � � � � �

� � � � � � �� � 	 � � � �
� � 
 � � � � � � � 
 
 � � � �� � � �

� � 
 
 � � � � � � � �� �
- If (

� � � � ! " � � � � �# % & or
� � � � ! " � �

), take
� � � � ! " � �

.

- else
� � � � ! " � � � � � � � � ��

� � � � �
�

� �
Updating :

- If
� ( ) * � � � � ! " � � � � �# % & , , we are in the desired interval:� ( � �
 � � � 
 � � � ( � �
 � � � � �
 � � � � � �

� � � � � and stop.

- else update �
 � � 

� �

, � �
 � � 

� �

and � � � 

� �

:

– if case 1 above is valid: remove in � �
 � � �
the � 	 � � � ��

-th
column, add it in �
 � � �

and � � � 

� � � , � � � � � � - � � �� * � ,	 � � 


� � � 	 � � � � �
,

– if case 2 above is valid: remove in �
 � � �
the � 	 � � � �

� -th
column and the corresponding � 	 � � � �

� -th component in� � � �
, then add this column in � �
 � � �

, 	 � � 

� � � 	 � � � � �

,

– then
� � � 


� �# % & � � � � � ! " , . � . � �
and return.

4. THE APPLICATION TO STAP

4.1. The STAP context

STAP is an increasingly popular signal processing approach for de-
tecting slow moving targets in the presence of clutter and noise.
STAP consists in simultaneously processing spatial and tempo-
ral data. The basic theory of STAP is by now well developed
[13, 19, 20, 21]. An advanced airborne radar uses a � 
 -element
uniform linear array with interelement spacing � taken equal to half-
wavelength. It transmits a � � -pulse waveform at pulse repetition
interval � . For each pulse, the radar return from scatterers is asso-
ciated to a given range from the transmitter. The time slot corre-
sponding to a given range is commonly referred as a “range bin”.
Data are collected over � range bins. The received data from the � -
th range bin can be viewed as a � 
 � � -dimensional complex vector
called “snapshot”. When a target is present in the � -th range bin the
associated snapshot � can be written as:� � � � � � �� � �� � � � � � � � (7)

where � � �� � ��
are the target amplitude, normalized angle and nor-

malized Doppler frequency respectively. Here � � � �� � �� �
represents

the spatio-temporal steering vector. It corresponds to:� � � �� � �� � � / � �� � � � � �� � �
where

�
represents the Kronecker product and/ � �� � � � � � � �

� � � " " " � � �
� � � & ( � � � � * � �� � �� � � � � � � �

� � �, " " " � � �
� � � & . � � � �, * � �

are the � � -dimensional spatial steering vector and � 
 -dimensional
temporal steering vector. Moreover the interferences are represented
by � � � � , they are modelled as:

� � � � � � 0 � 	 � � � � � � � � � �� � � �� � � � 	 �

where � 0 is the clutter component and 	 2 4 � � � 6 � 0 �
. Indeed,

the clutter perturbation present in the � -th range bin corresponds to
the sum of many targets with a complex Gaussian amplitude � � .
The principal characteristic that distinguishes clutter from potential
moving targets is the dependence of the clutter normalized Doppler
frequency on the normalized angle:�� � � � � 8 � 9 : � 9 � < �� �� � � > �� � �
In the following, we will consider that the parameter > is adjusted to
be equal to 1. As the principal goal of STAP is to separate targets and
clutter at each range bin, the sensor outputs are linearly combined in
order to maximize the output-signal to clutter-plus-noise ratio. The
well-known � 
 � � -dimensional optimum weight vector [22] is

@ � B � �
� � � � � � �� � �� � �

where B � � � � D � � � � � � E� � � �
is the covariance matrix of the inter-

ference (clutter plus noise). To apply this weight vector, we need an
estimate of the B � � � matrix and so one usually uses the

� � 
 � � adja-
cent range bins to perform this estimation ([13]). Since this is unfea-
sible in practice, many sub-optimal methods have been developed.
Below we apply the GMF technique to this problem, it requires noB � � � -estimate and works on a single snapshot.

4.2. The GMF in the STAP context

In this part we describe the different steps which permit to apply
GMF to (7). At first, we apply to the complex � a set of standard
beamformers tuned to ! equispaced spatio-temporal points. This
transforms the � 
 � � -dimensional vector � into a ! -dimensional
real vector. More precisely, a typical beamformer-output evaluated
at

�� �
and

�� �
and applied to the snapshot is:

� � �
1 � � � � �� � � �� � � E � 1

� G � � 
 � � � � for � � � � � !
This allows to obtain the ! -dimensional real vector � in (1),(2)
which constitutes the input-data to the GMF. In [1], one proposes
to take ! equal to the number of degrees of freedom (d.o.f) of
the covariance matrix of the snapshot. In our case, this gives! � � � 
 � � � �

which is also the number of real d.o.f. in � .
To construct the column vectors of the 
 matrix in (2), all values in
frequency and azimuth which are liable to characterize a target are
discretized at equispaced spatio-temporal points. At each of these,
say, 	 points, one creates a basis vector by transforming the associ-
ated elementary � 
 � 
 -dimensional steering vector by the same set
of ! beamformers described above and used to build the observation
vector � .

One further normalizes (to one in Euclidean norm) all these vec-
tors to construct the ! I 	 real matrix 
 . The number 	 of columns
is fixed by the discretization steps in azimuth and Doppler frequency.
It has to be chosen so that it does not prevent the approach to at-
tain the Cramer Rao bounds. For standard values Signal to Noise
Ratios (SNR), one expects to improve the standard beamformer res-
olution by a factor 2 or 3. For this to be easily achievable, the nor-
malized frequency domain and normalized azimuth are typically dis-
cretized respectively in J � 
 and J � � below. The matrix 
 has thus	 L M � � 
 � � columns and ! � � � 
 � � � �

rows.
Note that since clutter can be modelled as a sum of stationary tar-

gets, they will identified by the GMF just like the targets of interest.
Since GMF is a high-resolution technique it may detect slowly mov-
ing targets undetectable by standard techniques. Its ability to sepa-
rate target and clutter is of course a function of SNR, CNR (Clutter
to Noise Ration), � 
 and � � .
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4.3. Application of the algorithm

Simulations have been done for � � � � � � � �
. The normal-

ized azimuth and normalized Doppler frequency both belong to
� � � � � � � � � � . To build � the input-vector, we discretize both spaces
with a step of

� � � �
that leads to 	 � 
 
 � � 
 � � � � � �

beamform-
ers. To build the � columns of the 
 matrix we take a step equal to� � � �

in azimuth and frequency, this gives � � � � 
 � �
.

We simulate a scenario with one target at
� �� � � � �� � � � � � �

in presence of clutter with � � 	 � � � 	 � 
 � � � . The parameter�
is fixed to

� �
, due to limited space we do not specify how to tune

this parameter, one can actually take any value between, say,
� 


and� 
 and still get the same type of outputs. The algorithm described in
section 4 takes about 10 seconds on standard desk computer to solve
(2).

In figure 1(a) and 1(b) we compare the classical 2D-IFFT
method to the GMF approach respectively. Target and clutter are
separated by GMF but not really by the 2D-IFFT method. If the
target is taken closer to the clutter, GMF will still localize it but ad-
ditional spurious peaks will appear around it making a true detection
more questionable.

(a) 2D-IFFT processing

(b) GMF
Fig. 1. Detection of one target in clutter plus noise environnement

5. CONCLUSION

We have applied the GMF [1] to the basic STAP problem. The major
difficulty was to overcome the computational complexity problem.
To do so we have presented an algorithm that allows to apply GMF to
problems having several thousands unknowns. Since GMF identifies
both the targets and a model of the clutter it has the advantage to be
able to work on a single snapshot without prior estimation of the
interference covariance matrix.
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