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ABSTRACT

The contribution of this paper is twofold. We first clarify geomet-
rically an inherent difference in convergence speed between two
adaptive algorithms, projected-NLMS (PNLMS) and constrained-
NLMS (CNLMS), both of which are widely used for linearly con-
strained adaptive filtering problems. A simple geometric interpre-
tation suggests that CNLMS converges faster than PNLMS espe-
cially in the challenging situations of the adaptive beamforming
where there exist spatially-correlated interferences (i.e., interfer-
ences that have small angular separation with the desired signal).
To enhance the advantage of CNLMS in convergence speed while
keeping linear computational complexity, we then propose an ef-
ficient adaptive beamformer that utilizes multiple data at each it-
eration by extending the constrained parallel projection algorithm
to complex cases. The simulation results demonstrate that the pro-
posed beamformer exhibits even faster convergence than the con-
strained affine projection algorithm (CAPA) as well as CNLMS.

1. INTRODUCTION

The linearly constrained adaptive filtering problem has received
considerable attention due to its important applications such as
adaptive beamforming, multiuser detection in CDMA, and spectral
estimation [1–9]. We focus on the adaptive beamforming applica-
tion, although similar discussion could be possible for other appli-
cations. In [10], it is reported that the signal to interference-plus-
noise ratio (SINR) performance of minimum variance beamformer
is affected by spatial/temporal-correlation1 between the desired
and interfering signals as well as signal to noise ratio (SNR), inter-
ference to noise ratio (INR) etc. Although an extensive amount of
studies has been done to deal with the temporally-correlated case
(see, e.g., [11]), few studies have been reported in the spatially-
correlated case [12]. This paper provides a new insight to the chal-
lenging spatially-correlated situations.

We shed light on the least mean square (LMS) type approach
to the adaptive beamforming, because it enjoys notable advantages
of linear computational complexity and self-correcting feature [1]
(see [7] for other approaches). To raise the convergence speed of
the method in [1], several improved versions have been proposed
[4, 5, 9]. On the other hand, a related algorithm has been inde-
pendently proposed for the multiuser detection problem in CDMA
[2, 3], and its improved version is also proposed in [8] (an ex-
tension of the method in [8] to complex-valued signals is pre-
sented in [13]). From a geometric viewpoint, we classify the exist-
ing LMS type approaches into two families: embedded-constraint
type [4, 5, 9] and non-embedded-constraint type [1–3, 8, 13] (see
[9] for this classification). Respective typical examples of embed-
ded and non-embedded families are constrained NLMS (CNLMS)
[4] and projected NLMS (PNLMS) [3], both of which are widely
used in linearly constrained adaptive filtering applications due to
their computational simplicity and reasonable convergence prop-
erty. Hence, it is of great interest to investigate the difference in
convergence speed between CNLMS and PNLMS.

In this paper, we first provide a desirable strategy to the adap-
tive beamforming in spatially-correlated cases. By a simple geo-

1The spatial correlation is related to angular separation, and the tempo-
ral correlation is also referred to as coherence (see, e.g., [11]).
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Fig. 1. Performance of the CNLMS and PNLMS algorithms.

metric interpretation, a great advantage of CNLMS over PNLMS
in convergence speed can be expected especially in the presence
of spatially-correlated interferences. (This feature is confirmed
in our extensive simulations, one of which is shown in Fig. 1.)
This observation motivates us to explore a more efficient algo-
rithm in the embedded-constraint family, to which CNLMS be-
longs. To enhance the advantage of CNLMS, we propose a promis-
ing embedded-constraint adaptive beamformer, which utilizes mul-
tiple data at each iteration by extending the constrained parallel
projection algorithm [9] to complex cases. Simulation results demon-
strate that the proposed algorithm successfully accelerates conver-
gence speed while keeping linear computational complexity (see
Sec. 4).

2. LINEARLY CONSTRAINED ADAPTIVE
BEAMFORMING PROBLEM

We consider narrowband beamforming scenarios with � antenna
elements of uniform linear array (ULA) [7] (see Fig. 2). Through-
out the paper, ���� �

�� and �� �� �
� denote real and com-

plex Hilbert spaces equipped with inner products ����� �� �
�
�,

���� � ��, and ����� �� �
�
�, ���� � �� , respectively (su-

perscripts ���: transposition, Hermitian transposition, respec-
tively). We can define a bijective mapping between ��and �� ,
as shown in Sec. 3.2. Let ����������� � � [�� �� � � ���],
for � � �� �� 	 	 	 � � , be the sequence of �th transmitted signals,
and �� � �� (� � �� �� 	 	 	 � �) the corresponding steering vec-
tors, where the �th signal is the signal of interest (SOI) and the
others interferences. Here, the steering vector is defined as �� ��

���� � 	� 
� ��
��
�
��� ����� ��� ��	
� 	 	 	 � ���������� ��� ��	
�� �

�� , �� � ��� �� 	 	 	 � ��, where �� stands for the direction of
arrival (DOA) of the �th signal, 	 the distance between two ad-
jacent elements of ULA, and 
 the wavelength of the imping-
ing signals (� ��


��). Let ���������� � �� be the se-
quence of additive noise vectors. The received signal vector at
the ULA is expressed as ���� �� �
����� 
����� 	 	 	 � 
� ����� ��

������� �
��

��� ������� ����� � �� , where 
���� � � ,
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Fig. 2. Uniform linear array with narrowband adaptive beam-
former.

�� � ��� �� � � � � ��, denotes the received signal at the �th an-
tenna at the �th snapshot.

Throughout, we assume that the available information is the
received signal ���������� and ��. Given ���� �� �� �� �
�� � ��� � �� (� � �

��� , � � �
� ), the linearly constrained

narrowband beamforming problem is stated as follows:

find �opt � ��� 	
�
��������

�
�
���� (1)

where �� �� 	����������� � �
��� is the autocorrelation

matrix of ���� (	���: expectation). In the following, for sim-
plicity, we focus on a special case � � �� and � � � (see [7,
Sec. 6.7.1] for other typical constraints), where the constraint set
is given by

� �� ����� �� � �� � �� � ���� �� � ��
 (2)

In this case, the optimal distortionless beamformer is given by
��� �� �opt � ����

� ������
�
� �

��
� ���, which is called the

minimum power distortionless response (MPDR) beamformer or
the Capon Beamformer (CB) [7]. The goal is to well-approximate
the optimal beamformer �opt with limited observable snapshots.
Note that the set � is a hyperplane referred to as an absolute (or a
hard) constraint.

3. A NEW INSIGHT INTO ADAPTIVE BEAMFORMING
IN SPATIALLY-CORRELATED CASES

A basic principle of the CLMS [1], CNLMS [4] and PNLMS [3]
has been demonstrated geometrically in [6]. To clarify further
the feature of CNLMS and PNLMS, we first provide a different
geometric interpretation by focusing two distinctive situations in
adaptive beamforming: the desired and interfering signals are (a)
spatially-correlated and (b) spatially-uncorrelated. The interpreta-
tion gives a reasonable support to the interesting phenomenon ob-
served in Fig. 1. We then present an efficient set-theoretic adaptive
beamformer, which is based on a parallel projection onto certain
closed convex sets. Also we present an efficient formula to com-
pute the projections onto those convex sets.

3.1. Convergence Speed of CNLMS and PNLMS

Let us first present the CNLMS [4] and PNLMS [3] algorithms
in a complex-valued vector form below, although the algorithms
are originally proposed in a real-valued vector form (A complex-
valued vector expression of the constrained LMS (CLMS) algo-
rithm [1] is given in [14]). Given a non-empty closed convex sub-
set � in any Hilbert space � and a vector � � �, 
���� � �
denotes the projection of � onto �; i.e., d��� �� �� 	
���� ��	
�� � �� 	 
�����. The CNLMS and PNLMS algorithms are
given as follows.

Algorithms. Let � be a linear constraint set and ��������
a sequence of hyperplanes defined by observed data. Given an
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Fig. 3. A geometric interpretation: CNLMS versus PNLMS under
two different cases. �� and ���� are the normal vectors of � and
��, respectively. We let ����

� � �
�	�
� � �� for comparison.

initial vector ����
� � �

�	�
� � �� � �, the CNLMS and PNLMS

algorithms generate respectively sequences �����
� ����� 
 � and

��
�	�
� ����� 
 � as

CNLMS: ����
��� �� �

���
� � ��

�

���������

� �	�
���
�

�
�

PNLMS: ��	�
��� �� 
�

�
�
�	�
� � ��

�

����

�	�
� �	�

�	�
�

��
�

�� � �
� , where �� � 
�� �� is the step size.

As a simple example, �� �� �� � �� � ������ �� � ��,
�� � �

� , is used in Fig. 1 as in2 [3] and [4]. A natural question
would be which algorithm is better. The remaining of this subsec-
tion is devoted to this issue.

Fig. 1 shows the results of simulations under ��� � �
� and
� � � interferences, where the signals arrive from �� � �Æ,
�� � ��Æ and (a) �� � ��Æ, (b) �� � ��Æ. Namely, the 2nd
interference in (a) has smaller angular separation with SOI than
the one in (b). The powers of both interferences are 10 times
greater than the one of SOI. The number of antennas is set to (a)
� � �� for better SINR performance and (b) � � ��. The
noise process ���������� is a complex vector i.i.d. Gaussian pro-
cess with 	������ � �, �� � �

� , correlation matrix �� ��
	����������� � ���	� , �� � �

� , and SNR � �� dB. For
PNLMS, the step size is set to �� � �
���, �� � �

� , as a refer-
ence, and the step size for CNLMS is tuned [(a) �� � �
��, (b)
�� � �
���, �� � �

� ] so as to achieve the same steady-state per-
formance as PNLMS. The output SINR is calculated by averaging
over 500 realizations (see also [9]).

We define the spatial-correlation between two signals with
their associated steering vectors � and � as ������ �� �� ��� ��

�
�

���� � ����; ���� stands for the real part of � � � . For the cases
(a) � � ��, �� � ��Æ and (b) � � ��, �� � ��Æ, the spatial-
correlations ������� ��� are approximately given by (a) �
��� and
(b) 	�
��, respectively. This implies that �� is far from orthogo-
nal to �� in (a), while almost orthogonal in (b). Hence, �� is also
far from orthogonal to ���� in (a), which is true especially when
the power of spatially-correlated interference is high.

Based on this consideration, Fig. 3 illustrates a geometric in-
terpretation of CNLMS and PNLMS (�� � �) in (a) spatially-
correlated and (b) spatially-uncorrelated cases. As we can see,
�
���
� moves to the intersection �� � � along the constraint �

without stepping away, whereas ��	�
� moves to �� and then goes

back to �. Thus, CNLMS and PNLMS are called embedded-
constraint and non-embedded-constraint, respectively, since the
constraint is embedded in the direction of update for CNLMS (and
not for PNLMS). We observe that PNLMS obtains a point far
from the intersection �� � � especially in the case (a), while
CNLMS obtains the projection onto the intersection in the both

2In [3], the method is called normalized OPM based gradient projection
(OPM-GP), which is indeed a normalized version of the method in [2].
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cases. Hence, assuming�opt � ����, an advantage of CNLMS
over PNLMS in convergence speed is naturally expected (see Fig. 1).
The spatial-correlation should be the key factor that governs the
extent of the difference in convergence speed between CNLMS and
PNLMS.

From the above discussion, it is of great interest to develop an
efficient embedded-constraint beamformer by devising the CNLMS
algorithm for further acceleration. In the following subsection, we
propose a novel embedded-constraint adaptive beamformer based
on the constrained parallel projection.

3.2. Proposed Embedded-Constraint Adaptive Beamformer

In Sec. 2, the linearly constrained narrowband beamforming prob-
lem is defined in the complex-valued vector space ����� �

� ).
We can equivalently reformulate the problem in a real-valued vec-
tor space ����� �

�� � by a bijective mapping between ��and
�� (so that we can directly utilize the results in [15, 16]).

For any � � �� � ��� � �� (����� � �
� ), let �� ��

������
�
� �
� � ��, where the subscripts � and � respectively stand

for the real and imaginary parts of a scalar/vector/matrix. Sim-
ilarly, for any set � � �� , define �� �� ��� � ������

�
� �

� �
�� � ��� � �� � ��. Given �� � � �� , the following hold:

��� ��� � �����, ��� ��� � ������, where � ��
�

� ����� �

�
� �

����� (�� : �	� identity matrix). The linearly constrained
narrowband beamforming problem is formulated in��as follows:

find ��opt � ��	 
��
��� �������

��� ������ (3)

where ��� ��

�
����� ������
����� �����

�
. We remark that ��� ����� �

�

��������	������	��� �������. The constraint set � � �� is equiv-

alently mapped to

�� �� ��� � ��� ��	����	��� �� � �
� ��� � � ��

Our approach is based on the set-theoretic adaptive filtering

framework [15–17]. The optimal beamformer ��opt � ��is ap-
proximated as a point in the intersection of certain closed convex
sets defined by the received signals (and possibly a priori informa-
tion). At each iteration, different convex sets are defined and the
distance to their intersection is reduced monotonically. The desir-
able properties for the convex sets are (i) to contain ��opt with high
reliability for stable convergence and (ii) to have a fairly small in-
tersection for fast convergence. Our strategy is to appropriately
inflate the sets for (i) and utilize multiple convex sets at each iter-
ation for (ii).

At each iteration � � �
� , the multiple closed convex sets����
�� are defined by the multiple received vectors ���	�, 
	 �

�� �� ��� ��
� � � � �
���
� ����
��, where � � �
� . Namely,

we use the data observed at the last 
����� �� snapshots. Based
on the remark under (3), we define the stochastic property sets as
follows:

����
�� �� ��� � ���
�������	������	��� ������ 
 
�

�
� 
	 � ���

which is equivalently represented in �� as ���
�� �� �� � �� �
� ���	�� �� �� 
 
��� 
	 � ��
 Here, 
�, 
� � �

� , is a positive
constant governing the reliability such that ��opt � ����
��. A
simple design of 
� is 
� � �, 
� � �

� , as in CNLMS, which
utilizes �

������� �������. Another simple design will be an esti-

mate of ��� �������opt� ��� � ������������������ ��opt��� as
shown below.

Example 1 Given the initial value 
� � � and the exponential
factor � � ��� 
�, generate a sequence �
������ recursively as


� � �
��� � �
� ��
������������������ ���

���� 

To extend the embedded-constraint algorithm in [9] to com-

plex cases in a computationally-efficient manner, �
����	��� �������,

	 � ��, should simply be computed (see also Algorithms in Sec. 3.1).
Fortunately, we can derive the following simple formula.

Proposition 1 Suppose that ����
�� � �� �� � for 	 � �� and
� � �

� . Let �
�	� �� ����������	� with ���	� �� � ���	�����.
Then, we obtain

�
����	��� ������� �

�		
		�
��� � ���
 �	���� ��


����
 �	�
��
�	� 
��
�	��
if ��� �� ����
������� otherwise,

(4)

where 
 �� ��� � ��	����	����	����	��� is the projection matrix
onto �� , the translated subspace of ��.

Proof is omitted. The proposed beamformer is given as follows.

Algorithm 1 With an initial estimate ��� �� �	� � ��, generate
iteratively a sequence of beamforming vectors ��������� by

����� � ��� � ����


�
����

����
� �

����	��� ��
������ ���

�
�

(5)

� � �

� , where �� � ��� ��, ����
� � ��� 
�, 
	 � ��, is the weight

satisfying
�

����
�
���
� � 
, and

�� ��

�					
					�

�
����

�
���
�

����
����	��� �� ������ ���

������������
�
���
� �

����	��� �� ������ ���

���� �
if ��� �� �����

����
�� � ���

� otherwise


If ����
�� � �� � �, �
����	��� �� ����� is not defined. Fortunately,

we have ����
�� � �� � � �
� ���	� � span��	����	�� and

����	�� � 
� ��	�� �
which happens only when interferences plus noise is spatially-
correlated with SOI completely. In such an extreme case, there is
nothing for a beamformer to do, thus �

����	��� �� ����� is simply
replaced by ���.

By assigning � � 
 and 
� � �, 
� � �
� , we have �� � 
,


� � �
� , thus (5) gives the equivalent real-vector expression of

the complex vector version of the CNLMS algorithm (see Algo-
rithms in Sec. 2). The update equation in (5) is called the con-
strained parallel projection (see [9, AppendixD]). The computa-
tional complexity issue is discussed in the concluding remarks.

4. SIMULATIONS AND CONCLUDING REMARKS

To demonstrate the efficacy of the proposed beamformer, sim-
ulations are performed under exactly the same conditions as in
Fig. 1 (see Sec. 3.1). In the case (a), we set the parameters as
follows: �� � �
�� for CNLMS [4]; � � � (�: affine dimen-
sion), �� � �
��� for the constrained affine projection algorithm
(CAPA)-a [5]; � � �, �� � �
��� for CAPA-b; � � ��, �� �
�
���� �
��
� for Proposed-a and Proposed-b, respectively. We
use 
� presented in Example 1 with � � �
��� for proposed-a,
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Fig. 4. SINR curve: proposed versus CAPA and CNLMS.

and �� � �, �� � �
� , for proposed-b. In the case (b), we set as

follows: �� � ������ for CAPA-a; �� � ������ for CAPA-b;
�� � ������� ������ for Proposed-a and Proposed-b [the others
are the same as in (a)]. The step size for each algorithm is carefully
tuned so that all algorithms achieve the same SINR level in steady-
state. The results are drawn in Fig. 4. We observe that the proposed
beamformer attains a remarkable gain in convergence speed com-
pared with CAPA and CNLMS especially in the case (a).
CONCLUDING REMARKS
From our extensive experiments, we conclude that the proposed
beamformer is effective especially in the presence of spatially-
correlated interferences. We remark that the proposed beamformer
exhibits superiority to CAPA and CNLMS among all our experi-
ments, while CAPA sometimes exhibits inferiority to CNLMS, as
shown in Fig. 4. This stems from the noise sensitivity of APA [17].

The proposed beamformer has a notable advantage in terms
of saving time consumption, because each projection in (5) can be
computed in parallel by employing concurrent processors. With
such processors, the computational complexity imposed on each
processor is kept ����. Note that the computation of ���

�
���

� ��
�
��������� ��

�
�������������� ��

�
�������� in (4) just requires

�� multiplications. Moreover, even if some of the engaged pro-
cessors are damaged, the proposed beamformer can update the
weight vector based on information computed by the other pro-
cessors with just a slight loss in convergence speed, which implies
that the algorithm is endowed with a fault-tolerance nature.

For saving power consumption, it will be a good strategy to
switch the proposed and CNLMS algorithms (� � � and �� � �
in Algorithm 1) based on spatial-correlation between SOI and in-
terferences. To attain information about the spatial-correlation, we
can utilize a recently established technique [18] (based on alge-
braic phase unwrapping) which directly counts the number of sig-
nals arriving from an arbitrary range of direction without estimat-
ing the exact DOA of the signals.
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