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ABSTRACT

It is well-known that the Capon beamformer is sensitive to array
steering vector errors and may result into a worse performance than
classical data-independent beamformers. This paper follows a dif-
ferent path from the well-established Diagonal Loading techniques
and designs a robust Capon beamformer by a recent extension of
the Adaptive Projected Subgradient Method. The proposed method
marks a computational complexity of O(N2), where N is the num-
ber of array elements. The simulation results show that the proposed
beamformer achieves excellent performance especially in cases where
the Diagonal Loading techniques face difficulties, i.e. in cases where
the Interference to Noise Ratio (INR) is moderately larger than SNR.

1. CAPON BEAMFORMING

We will denote the set of all integers, nonnegative and positive in-
tegers, real, and complex numbers by Z, Z≥0 and Z>0, R, and C

respectively. For any complex number z ∈ C, we let z denote its
conjugate. Let also i :=

√−1.
We will consider the Uniform Linear Array (ULA) of Fig. 1. The

received signal y(k) := [y1(k), . . . , yN(k)]t ∈ C
N , ∀k ∈ Z≥0,

is a discrete-time complex vector random process indexed on Z≥0:
y(k) := q0(k)s0 +

�J

j=1 qj(k)sj + n(k), ∀k ∈ Z≥0, where the
complex scalar random processes (q0(k))k∈Z≥0

and (qj(k))k∈Z≥0
,

j = 1, . . . , J , contain information of the Signal Of Interest (SOI)
and of the J jammers respectively. The correlation matrix Ry (k) :=
E{y(k)y∗(k)}, k ∈ Z≥0, where E{·} denotes expectation, and the
superscript ∗ stands for complex conjugate transposition. The noise
process (n(k))k∈Z≥0

⊂ C
N is a complex vector i.i.d. Gaussian

process with E{n(k)} = 0 and Rn := E{n(k)n∗(k)}, ∀k ∈
Z≥0. The steering vector associated with the planar wave of wave-
length λ arriving from the far-zone field of the ULA with an an-
gle θ ∈ [0, π], called Direction Of Arrival (DOA), is defined as

s := [1, e2πi d
λ

cos θ , . . . , e2πi(N−1) d
λ

cos θ ]t ∈ C
N , where d is the

interelement distance of the ULA, and the superscript t denotes trans-
position. The steering vector corresponding to SOI will be denoted
by s0 while sj is mapped to the j-th jammer, j = 1, . . . , J .

The Capon Beamformer (CB) [1, 2] is defined as the solution to
the following linearly constrained minimization problem:

find w ∈ arg minz∈CN , s∗
0z=1 z

∗
Ry (k)z, k ∈ Z≥0. (1)

Then, wCB(k) =
Ry(k)−1s0

s∗
0Ry(k)−1s0

, ∀k ∈ Z≥0, and

E{|y∗(k)wCB(k)|2} =
1

s∗
0Ry (k)−1s0

, ∀k ∈ Z≥0. (2)
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Fig. 1. The narrowband beamformer for a Uniform Linear Array
(ULA) of N ∈ Z>0 elements. The array weighting vector w :=
[w1, . . . , wN ]t ∈ C

N will be adaptively selected.

Array processing methods are susceptible to a wide range of er-
rors like DOA mismatches, poor array calibration, unknown sensor
mutual coupling, near-far wavefront mismodeling, signal wavefront
distortions, source spreading, and coherent/incoherent local scatter-
ing [3]. These model mismatches cause a perturbation �sj of the
actual steering vector sj , j = 0, . . . , J , and thus affect the perfor-
mance of the beamformer [2]. It has been observed that CB becomes
sensitive to such sources of errors and may result into a worse perfor-
mance than that of a standard data-independent beamformer [3–5].

The most widely used approach to robust adaptive beamforming
is the Diagonal Loading (DL) technique [2]. To remedy model mis-
matches, a regularized version of the original Capon beamforming
problem is formed by adding an additional quadratic constraint on
the array weighting vector. This is equivalent to diagonally loading
the correlation matrix [2, §6.6.4]: given εDL > 0, calculate

wCB-DL(k) =
(Ry(k) + εDLIN)−1 �s0

�s∗
0 (Ry(k) + εDLIN )−1 �s0

, ∀k ∈ Z≥0, (3)

where IN stands for the identity matrix in C
N×N .

Recently, an extensive amount of excellent research has been
done on refining the DL approach for the robust adaptive CB prob-
lem [4, 5] by devising iterative methods for calculating an optimal (in
some sense) DL parameter εDL. Unlike the empirical choice of εDL in
the classical (3), these methods make explicit use of an uncertainty
set of the array steering vector in order to compute an optimal DL
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parameter. The study in [5] uses the very successful Second-Order
Cone Programming (SOCP) approach while the study in [4] exploits
the Lagrange multiplier methodology after an eigendecomposition
of Ry(k), k ∈ Z≥0, is performed.

Due to lack of space, the proofs of various propositions appear-
ing in this paper are omitted. The full discussion will be presented
in [6]. A small part of this study can be found in [7].

2. MATHEMATICAL PRELIMINARIES

In this paper we deal with the finite dimensional spaces R
m and C

m,
for ∃m ∈ Z>0, which are special cases of a Hilbert space H. In R

m,
the inner product is defined as 〈x, y〉 := xty, ∀x, y ∈ R

m. In C
m,

〈x, y〉 := x∗y, ∀x, y ∈ C
m. Henceforth, we shall denote by ‖·‖

the norm for both R
m and C

m. For any z ∈ C
m, we let 
{z} and

�{z} stand for its real and imaginary part respectively.
Given an x ∈ H and an ε > 0, we define the open ball B(x, ε) :=

{y ∈ H : ‖x − y‖ < ε}. Also, let the closed ball B[x, ε] :=
{y ∈ H : ‖x − y‖ ≤ ε}. Given a nonempty subset S of H, an
x ∈ S, and a sufficiently small ε > 0, assume that BS(x, ε) :=
B(x, ε) ∩ S �= ∅. The relative interior of a nonempty A ⊂ H
with respect to (w.r.t.) S is defined as riS(A) := {x ∈ A : ∃ε >
0 such that (s.t.) BS(x, ε) ⊂ A}. We let int(A) := riH(A) denote
the interior of A.

A set C ⊂ H is called convex if ∀x, y ∈ C and ∀µ ∈ [0, 1],
µx + (1 − µ)y ∈ C. A function Θ : C → R ∪ {∞} is called
convex if ∀x, y ∈ C and ∀µ ∈ [0, 1], Θ(µx + (1 − µ)y) ≤
µΘ(x) + (1 − µ)Θ(y). Given a nonempty S ⊂ H and an x ∈ H,
define the function d(x, S) := inf{‖x − y‖ : y ∈ S}. For any
nonempty closed convex set C ⊂ H, the metric projection onto C
is the mapping PC : H → C which maps x ∈ H to the uniquely
existing PC(x) ∈ C s.t. ‖x − PC(x)‖ = d(x, C). Next are a few
examples of closed convex sets together with their metric projection
mappings.

Given an x0 ∈ H and an ε > 0, the metric projection mapping
onto the closed ball B[x0, ε] is given simply by PB[x0,ε](x) = x,
if x ∈ B[x0, ε], and PB[x0,ε](x) = x0 + ε

‖x−x0‖ (x − x0), if
x /∈ B[x0, ε]. Given a �= 0 in a real Hilbert space and β ∈ R,
the closed convex sets Π := {y ∈ H : 〈a, y〉 = β} and Π− :=
{y ∈ H : 〈a, y〉 ≤ β} are called hyperplane and halfspace respec-
tively. The metric projection mappings onto Π and Π− are given by
simple closed forms [8]; ∀x ∈ H, PΠ(x) = x − 〈a,x〉−β

‖a‖2 a, and

PΠ−(x) = x − (〈a,x〉−β)+

‖a‖2 a, where α+ := max{α, 0}, ∀α ∈
R. An icecream cone is the closed convex set defined as K :=
{(x, r) ∈ H × R : ‖x‖ ≤ r}. Its metric projection mapping is
given as [8]: ∀(x, r) ∈ H × R,

PK(x, r) =

���
��

(x, r), ‖x‖ ≤ r,

(0, 0), ‖x‖ ≤ −r,
‖x‖+r

2
( x

‖x‖ , 1), otherwise.

3. PROPOSED ALGORITHM

We assume the knowledge of the erroneous steering vector �s0, and
the radius δ0 > 0 of an uncertainty set B[�s0, δ0] to which the actual
s0 most likely belongs to.

Instead of the actual Ry (k), which for the sake of simplicity we
consider here to be Ry := E{y(k)y∗(k)}, ∀k ∈ Z≥0, we have

used the following estimate for the calculations:

�Ry (k) :=
1

k + 1

k�
l=0

y(l)y∗(l) +
εAPSM

k + 1
IN , ∀k ∈ Z≥0, (4)

where εAPSM := 0.1. The above estimate is asymptotically unbiased,
i.e. limk→∞ E{�Ry (k)} = Ry . The matrix inversion lemma [2] im-
plies that �Ry (0)−1 = 1

εAPSM
(IN − y(0)y∗(0)

εAPSM+‖y(0)‖2 ) and �Ry (k)−1 =

k+1
k
�Ry(k − 1)−1(IN − y(k)y∗(k) �Ry(k−1)−1

k+y∗(k) �Ry(k−1)−1y(k)
), k ∈ Z>0.

The following algorithm generates a sequence (uk)k∈Z≥0
⊂

R
2N+3 by using a recent extension [9, 10] of the Adaptive Projected

Subgradient Method (APSM) [11] over the fixed point set of strongly
attracting nonexpansive mappings in infinite dimensional real Hilbert
spaces (see Step 4). The APSM [9–11] addresses the convexly con-
strained asymptotic minimization problem of certain nonnegative
convex continuous functions in an infinite dimensional real Hilbert
space. APSM includes many existing projection based adaptive fil-
tering methods like the classical NLMS or the Affine Projection Algo-
rithm (APA) and it has been showing superior results for real world
applications [9–11].
Step 0. Let k = 0, and arbitrarily choose a u0 ∈ R

2N+3.
Step 1. (Estimates of the SOI power) The motivation for this subpro-
cess comes from (2). An upper bound of the value in (2) is sought
based on the uncertainty set B[�s0, δ0]. Define first the bijection

φ : C
N → R

2N : s �→
�
	(s)

(s)

�
. Let �v0 := φ(�s0). Define also

�Ry (k)−1 :=
�	(�Ry(k)−1) −
(�Ry(k)−1)


(�Ry(k)−1) 	(�Ry(k)−1)

�
∈ R

2N×2N . Choose the

number of iterations N1(k) ∈ Z>0, an arbitrary v
(k)
0 and compute

for n = 0, . . . , N1(k) − 1,

v
(k)
n+1 := T�v0(v

(k)
n ) − 2κ

(k)
n+1

�Ry(k)−1T�v0(v
(k)
n ), (5)

where T�v0
:= PB[0,

√
N ]PΠ−

�v0

, PB[0,
√

N] is the metric projection

mapping onto B[0,
√

N ] ⊂ R
2N (recall that ‖s0‖ =

√
N ), and

P
Π

−
�v0

is the metric projection mapping onto the halfspace Π−
�v0

:=

{v ∈ R
2N : 〈−�v0, v〉 ≤ −(N − δ2

0
2

)}. If κ
(k)
n := 1/n, ∀n ∈ Z>0,

then the iterative procedure in (5) is a special case of the Hybrid
Steepest Descent Method (HSDM) [12] and produces a sequence
(v

(k)
n )n∈Z≥0

that (strongly) converges to the (unique) minimizer of

the function vt �Ry (k)−1v, v ∈ R
2N , over the set B[0,

√
N ] ∩

P
Π−
�v0

. The HSDM addresses more general convexly constrained

minimization problems and allows a wider variety of cost functions,
weights, and mappings in infinite dimensional real Hilbert spaces
[12]. To visualize the constraint set B[0,

√
N ] ∩ P

Π−
�v0

, note that it

is the closure of the convex hull of the nonconvex set S := {v ∈
R

2N : ‖v − �v0‖ ≤ δ0, ‖v‖ =
√

N}, i.e. the closure of the smallest
convex set containing S.

Now, compute �s(k)
0 :=

√
N

φ−1(v
(k)
N1(k)

)
���v

(k)
N1(k)

���
, and obtain as an esti-

mate of the SOI power �σ2
SOI(k) := (�s(k)

0
∗ �Ry (k)−1�s(k)

0 )−1.
Since �Ry(k) is asymptotically unbiased, we let here N1(k) :=

1, v
(k)
0 := v

(k−1)

N1(k−1) (v(−1)

N1(−1) := �v0), and κn+1 := 1/k.
Step 2. (Data-independent robust beamformer) Given the estimate
�s(k)

0 and some δk s.t. 0 < δk < δ0, we seek now for an array
weighting vector w ∈ C

N s.t. s∗w ∈ [1 − ε, 1 + ε] + i[−ε, ε],
∀s ∈ B[�s(k)

0 , δk], where ε ≥ 0.
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Define the bijection ψ : C
N → R

2N×2 : s �→
�

	(s) −
(s)

(s) 	(s)

�
.

Notice now that
�
	(s∗w)


(s∗w)

�
= ψ(s)t

�
	(w)

(w)

�
. If we now let �Ak :=

ψ(�s(k)
0 ) =: [�a(k)

1 , �a(k)
2 ], where �a(k)

1 , �a(k)
2 ∈ R

2N , then we consider
the following problem: find x ∈ R

2N s.t.

−a
t
x ≤ ε − 1, ∀a ∈ B[�a(k)

1 , δk], (6a)

a
t
x ≤ ε, ∀a ∈ B[�a(k)

2 , δk], (6b)

−a
t
x ≤ ε, ∀a ∈ B[�a(k)

2 , δk]. (6c)

The constraints atx ≤ 1 + ε,∀a ∈ B[�a(k)
1 , δk] were omitted in

order to obtain better convergence results for a small number of an-
tenna elements (see Section 4). For a compact notation of (6), we
sort the above inequalities in the order of appearance. Then, the
problem becomes: find x ∈ R

2N s.t. htx − βν ≤ 0, ∀h ∈
B[�hν , γν ], ν = 0, 1, 2, where �h0 := −�a(k)

1 , �h1 := �a(k)
2 , �h2 :=

−�a(k)
2 , β0 := ε − 1, β1 := β2 := ε, and γν := δk, ν = 0, 1, 2.

Lemma 1 Given m ∈ Z>0, �h ∈ R
m, β ∈ R, and γ > 0, then

x ∈
�

y ∈ R
m : hty − β ≤ 0, ∀h ∈ B[�h, γ]

�
iff [ x

r ] ∈ K ∩Π ⊂
R

m+1, where r ∈ R. The set K :=
�
[ y

τ ] ∈ R
m+1 : ‖y‖ ≤ τ

�
is

an icecream cone, and Π :=
�
[ y

τ ] ∈ R
m+1 : [�ht

, γ] [ y
τ ] = β

�
is a

hyperplane.

Define, now, τ := [τ0, τ1, τ2]
t ∈ R

3. Define for ν = 0, 1, 2,
Ξν := {y ∈ R

2N : hty − βν ≤ 0, ∀h ∈ B[�hν , γν ]}, the ice-
cream cone Kν :=

�
[ y

τ ] ∈ R
2N+3 : ‖y‖ ≤ τν

�
, and the hyper-

plane Πν(�s(k)
0 ) := {[ y

τ ] : [�ht

ν , 0, . . . , 0, γν , 0, . . . , 0] [ y
τ ] = βν},

where γν is placed at the (2N + ν + 1)-th position. Then, Lemma
1 suggests that for any ν = 0, 1, 2, x ∈ Ξν iff x̆ := [ x

r ] ∈
Kν ∩ Πν(�s(k)

0 ) ⊂ R
2N+3, where r := [r0, r1, r2]

t ∈ R
3. There-

fore, the following problem will be considered: find x̆ := [ x
r ] ∈�2

ν=0

�
Kν ∩ Πν(�s(k)

0 )
	
⊂ R

2N+3.

Step 3. (Data-dependent closed convex sets: Stochastic Property
Sets) Choose εk ≥ 0 and let ρk := �σ2

SOI(k) + εk. Define Y (k) :=
ψ(y(k)) ∈ R

2N×2. Define also the convex function

Fk(x̆) :=



� Y (k)

0

�t
x̆




2

− ρk, ∀x̆ ∈ R
2N+3.

A stochastic property set is defined as the closed convex set Ck :=
{x̆ : Fk(x̆) ≤ 0}. The function Fk is differentiable with differential
F ′

k(x̆) = 2
�

Y (k)
0

� �
Y (k)

0

�t
x̆, ∀x̆ ∈ R

2N+3. Given an x̆, an effi-
cient approximation of the difficult to compute PCk

(x̆) is given by
means of the metric projection mapping onto the halfspace defined
by Π−

F ′
k
(x̆)

:=
�
y̆ ∈ R

2N+3 : 〈y̆ − x̆, F ′
k(x̆)〉 + Fk(x̆) ≤ 0

�
. No-

tice that Ck ⊂ Π−
F ′

k
(x̆)

and x̆ /∈ Ck iff x̆ /∈ Π−
F ′

k
(x̆)

, ∀x̆ ∈ R
2N+3

[6]. Then, P
Π−

F ′
k
(x̆)

(x̆) = x̆ − Fk(x̆)+

‖F ′
k
(x̆)‖2 F ′

k(x̆), if F ′
k(x̆) �= 0, and

P
Π

−

F ′
k
(x̆)

(x̆) = x̆, if F ′
k(x̆) = 0.

Step 4. (Robust Capon beamformer) Define the index set Lk ⊂ Z≥0

s.t. k ∈ Lk and card(Lk) < ∞, where card(·) denotes the cardi-
nality of a set. To ι ∈ Lk we associate a stochastic property set Cι.
We define a set of nonnegative weights {ω′

ι(k)}ι∈Lk
, {ω′′

ν (k)}2
ν=0

s.t.



ι∈Lk
ω′

ι(k) +

2

ν=0 ω′′
ν (k) = 1. Then, by collecting all the

projections calculated in the previous steps, and for µk ∈ [0, 2Mk],

uk+1 := PK0PK1PK2

��uk + µk

���
ι∈Lk

ω′
ι(k)P

Π−

F ′
ι(uk)

(uk)

+
2�

ν=0

ω′′
ν (k)P

Πν (�s
(k)
0 )

(uk) − uk

��
,

Mk :=

���������������



ι∈Lk

ω′
ι(k)

αk





PΠ−

F ′
ι (uk)

(uk) − uk





2

+

2

ν=0

ω′′
ν (k)

αk




P
Πν (�s

(k)
0 )

− uk




2

,

uk /∈ (
�

ι∈Lk
Cι) ∩ (

�2
ν=0 Πν(�s(k)

0 )),

1, otherwise,

where αk := ‖
2
ν=0 ω′′

ν (k)P
Πν(�s

(k)
0 )

(uk)

+



ι∈Lk
ω′

ι(k)P
Π−

F ′
ι(uk)

(uk) − uk‖2. Notice that Mk ≥ 1.

Step 5. Set k ← k + 1, and go to Step 1.
Since the most expensive operation above is the multiplication of

a matrix with a vector, the computational complexity of the proposed
algorithm is O(N2).

Let us focus now on Step 4 of the above algorithm. Fix k ∈
Z≥0, and define I′

k := {ι ∈ Lk : uk /∈ Π−
F ′

ι(uk)
}, I′′

k := {ν ∈
{0, 1, 2} : uk /∈ Πν(�s(k)

0 )}. If we assume Ωk := (
�2

ν=0 Kν) ∩
(
�

ι∈I′
k

Π−
F ′

ι(uk)) ∩ (
�

ν∈I′′
k

Πν(�s(k)
0 )) �= ∅, then a robust Capon

beamformer would be given by the first 2N components of a uk ∈
Ωk. Suppose, now, that ∃k0 ∈ Z>0 s.t. Ωk �= ∅, ∀k ≥ k0. Assume
also Ω :=

�
k≥k0

Ωk �= ∅. A solution, thus, to the robust Capon
beamforming problem will be given by a point sequence (uk)k∈Z≥0

that converges in some sense to the vicinity of Ω. A mathematical
description of these issues is given below by using APSM arguments.

Proposition 2 Assume that there exists k0 ∈ Z≥0 s.t. Ω �= ∅. As-
sume (uk)k∈Z≥0

generated by the proposed algorithm with µk ∈
[Mkε1,Mk(2 − ε2)], ∀k ≥ k0, for some small ε1, ε2 > 0.

1. Assume that ω′
0 := infι∈Lk,k≥0 ω′

ι(k) > 0, and ω′′
0 :=

infν∈{0,1,2},k≥0 ω′′
ν (k) > 0. Then, limk→∞ d(uk, Π−

F ′
k
(uk)

)

= 0 and limk→∞ d(uk, Πν(�s(k)
0 )) = 0, ν = 0, 1, 2.

2. Assume ω′
0, ω

′′
0 , and that (F ′

k(uk))k∈Z≥0
is bounded. Then,

limk→∞ Fk(uk)+ = 0, where α+ := max{α, 0}, ∀α ∈ R.

Assume that there exists a hyperplane Π ⊂ H s.t. riΠ (Ω) �= ∅ in the
algorithm above. Then the followings hold.

3. There exists �u ∈ �2
ν=0 Kν �= ∅ s.t. limk→∞ uk = �u.

4. Assume also ω′
0, ω

′′
0 . Then, limk→∞ d(�u, Π−

F ′
k
(uk)

) = 0 and

limk→∞ d(�u, Πν(�s(k)
0 )) = 0, ν = 0, 1, 2.

5. Assume ω′
0, ω

′′
0 and that the sequences (F ′

k(uk))k∈Z≥0
and

(F ′
k(�u))k∈Z≥0

are bounded. Then, limk→∞ Fk(�u)+ = 0.

6. (Characterization of the limit point �u) Assume int(Ω) �= ∅
and the existence of ω′

0, ω
′′
0 . Then, �u ∈ lim infk→∞ Ωk, i.e.

the limit point belongs to the closure of lim infk→∞ Ωk :=�∞
k=0

�
m≥k

Ωm, which is the set of all those points that lie
in all but finite Ωks.
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Fig. 2. SNR = 10dB, while σ2
j = 100, j = 1, 2, 3, and σ2

4 = σ2
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0.1; thus INR = 34.78dB.

4. NUMERICAL RESULTS
We assume N = 20 and that d/λ = 0.5. Five interferences arrive at
the ULA with DOAs of 30◦, 50◦, 90◦, 120◦, and 150◦. The DOA of
the SOI wavefront is 70◦. The 16-PSK scheme is used to modulate
six mutually independent, uniformly distributed sequences of sym-
bols providing us with the random processes (qj(k))k∈Z≥0

⊂ C,
j = 0, . . . , 5. Define σ2

j := E{|qj(k)|2}, ∀k ∈ Z≥0, j = 0, . . . , 5.
We fix σ2

0 = 1. For the noise process, we let Rn := σ2
nIN . To

form the erroneous �s0 we introduce a mismatch of ±1.5◦ for the
SOI DOA.

Let, now, SNR := σ2
0/σ2

n , and INR :=
�5

j=1 σ2
j /σ2

n . The
evaluation of various methods will be done by the Signal to Interfer-
ence and Noise Ratio (SINR) function which is defined as SINR(k) =

σ2
0 |s∗

0w(k)|2
�5

j=1 σ2
j
|s∗

j
w(k)|2+σ2

n
‖w(k)‖2 , ∀k ∈ Z≥0, where (w(k))k∈Z≥0

is

the sequence of weighting vectors obtained by the implementation
of various adaptive beamforming schemes.

In the above figures, APSM denotes the proposed robust adap-
tive beamformer with card(Lk) = 1, while APSM(32) refers to
the proposed design with card(Lk) = 32, ∀k ∈ Z≥0, in Step 4.
Whenever INR > SNR+10, we assign bigger values to the weights
{ω′′

ν (k)}2
ν=0 than {ω′

ι(k)}ι∈Lk
in order to cancel the strong interfer-

ence. For INR ≤ SNR+10, the opposite scenario is followed and we
put more weight on the data (stochastic property sets in Step 3) than
the sets introduced in Step 2. This explains the ’jumps’ observed
in the neighborhood of INR=20dB in Fig. 3. CB-DL will stand for
the beamformer obtained by (3) with εDL := 10, while LCMV-DL
denotes the diagonally loaded version of the Linearly Constrained
Minimum Variance beamformer [2, §6.7] where the steering vec-
tors of all jammers are also assumed to be known with some error.
SOCP denotes the approach in [5], and RCB corresponds to the Ro-
bust Capon Beamformer with a spherical constraint in [4]. The term
’Ideal’ will refer to the solution of (1). Each point in Figs. 2 and 3 is
the uniform average of 100 realizations.
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