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ABSTRACT

In this work, we present a class of low-complexity reduced-
dimension adaptive beamformers constructed from expand-
ing Krylov subspaces. We demonstrate how the data dimen-
sionality reduction obtained from Krylov pre-processing de-
creases the sensitivity of reduced-rank adaptive beamform-
ing techniques to incorrect model-order selection and lessens
the computational complexity of systems involving large ar-
rays with many elements. An important advantage of the
proposed dimensionality reduction scheme is that it relieves
reduced-rank methods from the stringent requirement on the
precise model order determination.

1. INTRODUCTION

Given the correct model order, reduced-rank methods (e.g.
subspace techniques) provide high performance solutions to
many common signal processing problems involving inter-
ference cancellation and direction finding. Consequently,
they find a diverse range of applications in adaptive beam-
forming, interference cancellation, parameter and spectral
estimation, and signal detection. However, these methods
require knowledge of the interference and signal model or-
ders. Their performances are often sensitive to errors in
model order determination [1]. To alleviate this problem,
algorithm implementers commonly rely on the traditional
methods for model order determination, such as the AIC [2]
and the MDL [3], to estimate the model order. However, for
applications such as passive sonar, the model order can be
highly variable and signals of interest are often times weak
compared to the interference and noise components. Such
application challenges motivate us to develop a new class
of dimensionality reduction processing techniques that are
robust to the model order over-determination.

Motivated by previous work on conjugate gradient meth-
ods [5, 6, 7], we develop, from the perspective of expand-
ing Krylov subspaces, a low-complexity dimensionality re-
duction method for adaptive beamforming. We demonstrate
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the capability of our proposed Krylov subspace technique
in making performance robust to model order determina-
tion. Therefore, our solutions are especially applicable to
space-time adaptive signal processing and adaptive beam-
forming in underwater environments where the model order
or the subspace rank is highly variable and time-varying due
to the changing dynamics.

2. NOTATION AND PROBLEM FORMULATION

We assume that data snapshots from an array of N sensors
with arbitrary geometry follows the linear model,

x[m] = s0a0[m] +
K∑

k=1

skak[m] + n[m],m = 1, 2, . . . ,M.

(1)
where vector s0 = s(θs) is the mode of signal of inter-
est (SOI); vectors sk = s(θk), k = 1, . . . , K, are the modes
of K interfering sources, and θk is the vector of spatial pa-
rameters associated with the kth mode. We assume that
the fading coefficients ak[m], k = 0, 1, . . . ,K, are statisti-
cally independent complex Gaussian random variables with
zero means and variances σ2

s and σ2
k, respectively. We also

assume that the ak[m] are statistically independent of the

white noise vector n[m] iid∼ CN(0, σ2
nIN ). For the data

model in (1), the data covariance matrix has the modal form
Rxx = σ2

ss0 sH
0 +RI, where RI =

∑K
k=1 σ2

k sk sH
k +σ2

nIN

denotes the covariance matrix of interference plus noise.
One popular adaptive beamformer or detector used in

passive sonar is Capon’s method [8] (also termed as the min-
imum variance distortionless response (MVDR) method).
The Capon test statistic is,

zcap =
1

sH
0 R̂−1

xx s0

, (2)

where R̂xx = 1
M XXH is the sample covariance matrix

calculated from M independent data snapshots collected as
the columns of N × M matrix X. In principle, Capon’s
method is straightforward to implement. However, arrays
with many elements are often utilized for detection, hence
the effective data dimensionality N can be quite large. Two
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important problems as a result of the large data dimension-
ality are the performance losses due to the small sample
size (data snapshots M ) relative to the data dimension N
in Capon’s method and the computational burden associ-
ated with inverting a large-order sample covariance matrix.
In this work, we proposed a computationally efficient data-
driven Krylov subspace dimensionality reduction scheme
for implementing adaptive beamformers (ABFs) such as the
Capon’s beamformer (CBF) and the vector conjugate gradi-
ent (V-CG) beamformer. The proposed pre-processor not
only reduces the computational complexity but also effec-
tively reduce the performance sensitivity to model order over-
determination faced by many ABFs.

3. DATA DIMENSION REDUCTION

We propose a two stage data-driven procedure for imple-
menting the adaptive beamformers. In applications such as
passive sonar, it is often possible to obtain an approximately
representative secondary data set of noise and signal mea-
surements independent of the primary data for detection,
say, just prior to the detection interval, that can be used to
determine the spatial basis vectors or subspace < T > that
are relevant to detecting the signal. The dimensionality of
< T > can be much less than the array dimensionality N .
Therefore we can reduce the dimensionality of the data and
the associated sample covariance matrix by the projections
y[m] = THx[m] and THR̂xxT respectively.

Our rationale is that in many situations, the fading co-
efficients may change quickly from snapshot to snapshot
as a result of non-stationarity of the temporal second-order
statistics. However, the underlaying spatial subspace < T >,
parameterized by the spatial parameters of the SOI and the
interfering sources, may not change so rapidly over the tem-
poral interval for processing/integration. Therefore, in data-
driven adaptive space-time processing, we can use the T
matrix calculated from the previous processing interval as
the dimensionality reduction pre-processor for the subse-
quent data sets. The estimated subspace < T > for the
dimension reduction stage does not have to be precise since
further adaptation will be done in the second stage of pro-
cessing. Through the simulation examples, we demonstrate
the feasibility and effectiveness of such utilization in adap-
tive beamforming.

We now describe the data-driven dimensionality reduc-
tion scheme. Using the subspace expansion idea, we con-
struct a N × p matrix T for data dimensionality reduction,
such that

T ∈ Kp(R̂xx, s0), p << N,

where vector s0 is the SOI, and Kp(R̂xx, s0) is the Krylov
subspace of rank p. The choice of parameter p should be
large enough to include the SOI mode and the interfering
modes that are linearly correlated to the SOI mode, yet
small enough to maintain good detection performance.

We would like to construct a T with orthonormal columns
to avoid dependencies of the adaptive beamformer test statis-
tic on the particular realization of basis of T. Motivated by
vector conjugate gradient (V-CG) ideas in combination with
simple sequential normalization and projections, we present
a computationally efficient procedure for generating an or-
thonormal basis for the columns of T. Specifically, start-
ing from the SOI mode s0, the orthonormal columns of T
can be constructed directly using the sequential projections
and normalization, similar in spirit to the Gram-Schmidt
procedure, on the nature Krylov basis vectors κi’s, with
κi = R̂xx κi−1 and κ1 = s0. That is, for i = 2, 3, . . . , p,
we calculate:

κi = P⊥
Ti−1

R̂xx κi−1

ti =
κi

‖κi‖
Ti =

[
Ti−1 ti

]
, (3)

where the initials are chosen as κ1 = s0 and T1 = s0/‖s0‖.
The projection operator contains the sequential projections
due to the orthogonality among columns of matrix Ti−1,
i.e., P⊥

Ti−1
= IN − ∑i−1

k=1 tk tH

k . Upon the completion of
iterations in eq.(3), the dimensionality reduction matrix T is
simply the Tp. Using the above pre-processing matrix, we
can map the original high-dimension data set {x[m] }M

m=1

into the reduced-dimension data set {y[m] }M
m=1,

y[m] = THx[m], m = 1, 2, . . . , M. (4)

Ideally, as long as the rank of the Krylov subspace < T >
is above the minimum sufficient rank, i.e. p ≥ (K + 1),
for capturing the SOI mode as well as the interfering modes
linearly correlated to the SOI mode, there is no information
loss for detection and beamforming.

It is well known that the major advantages brought by
the dimensionality reduction pre-processing are two-fold.
First, it helps to reduce the computational burden associ-
ated with filtering out a few components of special inter-
est from a large dimensional data set. Secondly, in the re-
duced dimension space, data-driven adaptive filtering and
beamforming methods can rapidly converge to the desired
solution. In this work, we demonstrate that there is an-
other important advantage in using the above Krylov sub-
space operator T for dimensionality reduction. That is, it
makes the subsequent adaptive filtering and beamforming
methods, working on the reduced-dimension data, robust to
model order over-determination. We observe that the rank-r
Krylov subspace in the original full-dimensional data space,
Kr(R̂xx, s0), and the corresponding rank-r Krylov sub-
space in the reduced dimension data space, Kr(R̂yy, sy),
are related by the dimension reduction matrix T (with or-
thonormal columns) and its projection matrix PT = TTH ,
i.e.,

Kr

(
PT R̂xx PT, PT s0,

)
TH

−→ Kr(R̂yy, sy),
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where the role of the projection operator PT is to re-shape
and truncate the eigen-values of R̂xx to improve the con-
dition of R̂yy, so that eigen-values of the R̂yy equals the
p non-zero eigenvalues of PTR̂xxPT. In doing so, we get
around the ill-condition by trimming off the less relevant
contributions from the high-order powers of eigen-values
of R̂xx outside the rank-p Krylov subspace < T >. This
can be seen from the decorrelating effect of the conjugate
direction vectors di’s, DT = [d1 d2 . . .dp ] on the ma-
trix R̂xx. That is, DH

T R̂xx DT = diag{δ0, δ1, . . . , δp−1},
with δi = dH

i R̂xx di. Note that < DT >=< T >
and the two matrices are related by the QR decomposition
or G-S orthogonalization. Applying the projection matrix
PT = TTH on the the sample correlation matrix, we have

PT R̂xx PT = UT Σ̂yy UH

T, (5)

where the N × p matrix UT = TÛyy has orthogonal
columns (similar to T), the Ûyy is a p × p unitary eigen-
matrix of R̂yy, and the diagonal matrix Σ̂yy contains the
eigen-values of R̂yy. The pre-processor T helps to elim-
inate the non-relevant components present in the original
data x[m] as well as to alleviate the ill-condition of the prob-
lem in terms of the Krylov-spectrum truncation.

4. EXPERIMENTAL RESULTS

To demonstrate the robust performance brought by the pro-
posed dimensionality reduction scheme for implementing
various two-stage adaptive beamformers, we use an exper-
imental setup with a line array of a given geometry on the
arrangement of N = 60 array elements. The estimate R̂xx

is obtained from a total of M = 65 snapshots. The total
number of modes in x[m] is fixed at K + 1 = 3. The two
interfering modes, approximately 2.58 DFT-bins away from
each other, are not orthogonal to the SOI mode. To study
the detection performance (Pd versus SNR in dB) of var-
ious adaptive beamformers, we fix the false alarm rate at
Pfa = 0.02. The signal-to-noise ratio for the SOI is de-
fined as, SNR = σ2

s/σ2
n, and the interference-to-noise ratio

is fixed as, INR =
∑K

k=1 σ2
k/σ2

n = 18dB.

4.1. Full-Dimension V-CG Adaptive Beamformer

Using the results in [9], it can be shown that the full-dimension
reduced-rank V-CG beamformer (using the true Rxx) con-
verges to the optimum beamformer in at most rankvcg =
K+1 steps. However, when we try to adaptively implement
the full-dimensional reduced-rank V-CG beamformer (us-
ing the sample covariance matrix R̂xx), the performance
does not increase montonically with rankvcg. In fig. 1(a) we
have plotted the performance of the full-dimension adaptive
V-CG beamformer as a function of the hypothetic model
order rankvcg. In this example, the rank (rankvcg) of the

full-dimension adaptive V-CG beamformer was varied from
2 to 10. From these plots we see that when the sample co-
variance matrix R̂xx is used instead of the true one, de-
tection performance improvement starts to back off from
the optimum one once the rankvcg goes beyond its optimal
value (here the optimal value is 2) and rapidly degrades.
This is a result of estimation errors in R̂xx. It is has been
noticed that the bias and variance tradeoff results in a bal-
ance point in the choice of optimal rankvcg for the given
values of data dimension N and the snapshot number M .

4.2. Reduced-Dimension Adaptive Capon Beamformer

We now apply our new dimensionality reduction scheme to
Capon’s method. The adaptive reduced-dimension Capon’s
test statistic used here is

z(y)
cap =

1
sH
y R̂−1

yy sy
, (6)

with R̂yy = THR̂xxT, and sy = TH s0. In fig. 1(b)
we have plotted the detection performance of the adaptive
reduced dimension Capon’s method as a function of dimen-
sion order p where recall, p is the column dimension of the
matrix T . One can see that the detection performance is
quite robust to model order over-determination when we
vary the dimensionality reduction parameter p = { 3, . . . , 10}.
As expected, when the value for the dimensionality reduc-
tion parameter p is very large relative to the true model or-
der K + 1 = 3, say p = 20, the performance of the adap-
tive Capon beamformer degrades significantly from the op-
timum one.

4.3. Reduced-Dimension V-CG (RD-VCG) Adaptive
Beamformer

The reduced-dimension adaptive Capon beamformer still
requires a p×p matrix inversion R̂−1

yy . To further reduce the
computational complexity we apply the V-CG algorithm to
evaluate the Capon method test statistic. Using the Krylov
subspaces in the reduced-dimension data space, the RD-
VCG beamformer avoids the need to invert the sample co-
variance matrix R̂−1

yy yet delivers better performance than
the reduced-dimension adaptive Capon’s beamformer. In
Fig. 2, we have plotted on the detection performance of
the RD-VCG adaptive beamformer for the choice of dimen-
sionality reduction parameter p = { 4, 10 }. From Fig. 2,
one can see that for a given value of dimension reduction
parameter p, the performance (as well as the computational
complexity) of the RD-VCG adaptive beamformer is lower-
bounded (as well as upper bounded) by the reduced dimen-
sion adaptive Capon’s beamformer.

5. CONCLUSIONS

We have developed a computationally efficient method for
data dimensionality reduction using the expanding Krylov
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(a). Full-dimension adaptive V-CG Beamformer.
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(b). Reduced-dimension adaptive Capon beamformer.

Fig. 1. Performance sensitivity of the full-dimension adaptive V-
CG beamformer and the reduced-dimension adaptive Capon be-
maformer to the over-determination on model order, rankvcg . The
order of the V-CG beamformer is varied from 2 to 10. The dimen-
sionality reduction matrix T was calculated using R̂xx and s0.

subspaces. Applied to the reduced-dimension data sets, the
resultant adaptive Capon beamformer (with no need for a
diagonal loading) and the vector conjugate gradient (V-CG)
beamformer of various ranks show remarkable robustness
to the over-determination on the model order.
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