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ABSTRACT

An order recursive algorithm for minimum mean square
error (MMSE) estimation of signals under a Bayesian model
defined on the steering vector is introduced. The MMSE
estimate can be viewed as a mixture of conditional MMSE
estimates weighted by the posterior probability density
function (PDF) of the random steering vector given the
observed data. This paper derives an adaptive closed form
Kalman-filter implementation that updates the weight vec-
tor by successive incorporations of data collected from ad-
ditional array elements in the steering vector. The perfor-
mance of the Bayesian beamformer is compared against
several robust beamformers in terms of mean square er-
ror (MSE) and output signal-to-interference-plus-noise ra-
tio (SINR).

1. BACKGROUND

The received data vector of an N -element sensor array at sam-
ple time k has the form

x(k) = a s∗(k) + i(k) + n(k), (1)

where s(k) is the desired signal with known power σ2
s , a ∈

CN is the steering vector, i(k) is the interence and n(k) is the
noise. Let Ri+n � E[(i(k) + n(k))(i(k) + n(k))H ] be the
interference-plus-noise covariance. Let (·)∗, (·)T and (·)H be
the complex conjugate, transpose and Hermitian transpose,
respectively. Assume that s(k), i(k) and n(k) are zero mean,
temporally white, complex Gaussian processes that are mutu-
ally independent to each other.

In practice, the true steering vector often deviates from
its presumed value for various reasons such as improper array
modeling, asynchronous sampling, pointing error, miscalibra-
tion, or source motion. It is often reasonable to model these
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errors collectively as a random error vector associated some
prior informations that are often available in statistical form.
This modeling technique has been used in robust beamform-
ing for direction-of-arrival (DOA) uncertainties in [1, 2] and
steering vector uncertainties in [3] and [4].

Using the Bayesian approach, the steering vector is mod-
eled as an N × 1 complex Gaussian random vector

a � CN (ā, C), (2)

with prior PDF

p(a) ∝ exp{−(a − ā)HC−1(a − ā)} (3)

where ā is the presumed steering vector and C is the error
covariance. Based on this model, the conditional data covari-
ance matrix is given by

R|a = E[x(k)x(k)H |a] = σ2
saa

H + Ri+n. (4)

Given a data block of K samples, X = [x(1) . . .x(K)], the
MMSE estimate of the signal vector, s = [s(1) . . . s(K)]T ,
is given by the conditional mean of s given X, which can be
expressed as

ŝ = E[s|X] =
∫

p(a|X)E[s|X, a]da. (5)

The MMSE estimate can be viewed as a combination of con-
ditional MMSE estimates weighted according to the poste-
rior PDF p(a|X). Since the signals are jointly, conditionally
Gaussian, the conditional MMSE estimate can be obtained by
a linear processor

E[s|X, a] = σ2
s XHR−1

|a a � XHw|a. (6)

The processor w|a is also the Wiener filter for the conditional
estimation problem. Substituting (6) into (5), the MMSE es-
timate is

ŝ =
∫

p(a|X)σ2
sX

HR−1
|a a da � XHwB. (7)
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where the weight vector

wB �
∫

p(a|X)σ2
sR−1

|a a da (8)

is known as the Bayesian beamformer. The posterior PDF can
be expressed as [1]

p(a|X) ∝ p(a)
(1 + σ2

saHR−1
i+na)K

exp
{

σ2
s‖XHR−1

i+na‖2

1 + σ2
saHR−1

i+na

}
.

(9)

2. APPROXIMATE BAYESIAN BEAMFORMER

The integral in the Bayesian beamformer is difficult to evalu-
ate directly. In [1] and [2], the authors parameterize the steer-
ing vector error by a single random variable and develop sev-
eral efficient algorithms. However, these algorithms do not
apply to vector uncertainties. In [4], the authors express the
integral in closed form by approximating the posterior PDF
with the prior PDF and simplifying the integral with alge-
braic approximations. This method discards information in
p(a|X), which leads to a significant loss of MMSE optimal-
ity. Moreover, the method depends on R i+n, which is often
not available.

The purpose of this paper is to provide a feasible adap-
tive algorithm for computing the Bayesian beamformer in (8).
The main idea is to approximate the posterior PDF in (9) with
some minor statistical assumptions such that the integral can
be evaluated in closed form. First, the conditional data covari-
ance R|a is approximated by the sample covariance matrix

R̂ =
1
K

XXH . (10)

In practice, the sample covariance is often loaded with a small
diagonal term to mitigate the approximation error [5]. With
this approximation, the Bayesian beamformer is approximated
as

wB = σ2
s R̂−1

∫
p(a|X) a da. (11)

Second, the variance of the random functional aHR−1
i+na is

assumed to be sufficiently small such that it can be approx-
imated by a constant. This condition is valid as soon as the
expected projection of the steering vector onto the interfer-
ence subspace is small, or equivalently, the interferers are lo-
cated far away from the main lobe of the prior Gaussian dis-
tribution. With this approximation, the posterior PDF can be
simplified as [2]

p(a|X) ∝ p(a) exp{−Kσ2
sa

HR̂−1a}. (12)

Substituting the prior PDF in (3) into (12) and completing the
square, the posterior PDF becomes a complex Gaussian PDF

with posterior mean given as

∫
p(a|X) a da ∝ (Kσ2

sR̂−1 + C−1)−1C−1ā. (13)

When K is zero, the posterior PDF is equal to the prior PDF,
and both sides equal to ā. This eliminates the scaling factor.
Substituting the posterior mean into (11) gives

wB = σ2
s(R̂ + Kσ2

sC)−1ā. (14)

Thus, the approximate Bayesian beamformer belongs to the
class of generalized covariance loading algorithms and it shares
the same basic structure as the robust beamformers introduced
in [6, 7, 8].

3. ORDER RECURSIVE IMPLEMENTATION

An order recursive algorithm is derived to compute the Bayesian
beamformer in (14). For n = 1, . . . N , let en be the nth col-
umn of the N×N identity matrix, and Φn be an N×n matrix
such that

Φn = [e1 e2 . . . en]. (15)

For notational simplicity, define

R̃ � R̂ + Kσ2
sC (16)

Qn � Φn(ΦH
n R̃Φn)−1ΦH

n (17)

un � σ2
sQnā. (18)

This yields a sequence of N × 1 filters {un}N
n=1, of which

the last filter is equal to the desired Bayesian beamformer,
i.e., uN = wB . Note that un only operates on the reduced
(lower dimensional) data block X1:n and the presumed steer-
ing vector ā1:n defined respectively by X1:n � ΦH

n X and
ā1:n � ΦH

n ā. The matrix Φn can be partitioned as

Φn = [Φn−1 en]. (19)

Applying the block matrix inversion formula, the matrix Q n

can be expressed recursively as

Qn = [Φn−1 en]
[
ΦH

n−1R̃Φn−1 ΦH
n−1R̃en

eH
n R̃Φn−1 eH

n R̃en

]−1 [
ΦH

n−1

eH
n

]

(20)

= Qn−1 +
(I − Qn−1R̃)eneH

n (I − R̃Qn−1)
eH

n R̃(I − Qn−1R̃)en

(21)

With (21), un can be expressed recursively as

un = un−1 +
σ2

s ān − eH
n R̃un−1

eH
n R̃Pn−1en

Pn−1en, (22)
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where ān � eH
n ā, Pn � I−QnR̃ and u0 � 0. Similarly, the

recursion of the oblique projector Pn is given by

Pn = Pn−1 − Pn−1eneH
n R̃Pn−1

eH
n R̃Pn−1en

. (23)

with P0 � I. It can be seen from (22) and (23) that the beam-
former has the form of a Kalman filter that is recursive in
order instead of time. A survey of similar Kalman filter real-
izations for adaptive filters are presented in [9]. The proposed
Kalman filter can be viewed as a multistage realization of the
beamformer, in which the beamformer is decomposed into
the span of a set of R̃-conjugate basis vectors generated from
en’s through successive oblique projections. In particular, the
basis vectors are

{e1, P1e2, . . . , PN−1eN}. (24)

To realize the R̃-conjugacy, note that

Φn−1R̃Pn−1en = 0 (25)

for all n. The basis vector Pn−1en is thus R̃-conjugate to
e1, . . . , en−1. Since all the previous basis vectors are linear
combinations of e1, . . . , en−1, the basis vector Pn−1en is R̃-
conjugate to the previous basis vectors. As this holds for all
n, all the basis vectors are R̃-conjugate to each other.

Assuming the error covariance is diagonal, i.e.,

C =

⎡
⎢⎣

δ1

. . .
δN

⎤
⎥⎦ , (26)

and replacing R̃ with R̂ + Kσ2
sC, the recursion can be sim-

plified into

un = un−1 +
σ2

s ān − eH
n R̂un−1

eH
n R̂Pn−1en + Kσ2

sδn

Pn−1en (27)

Pn = Pn−1 − Pn−1eneH
n R̂Pn−1 + Kσ2

sδnPn−1eneH
n

eH
n R̂Pn−1en + Kσ2

sδn

.

(28)

When δn is small, i.e., the uncertainty on an is small, the es-
timator puts more emphasis on the presumed value ān. When
δn is large, the estimate depends more on the past recursions.
The algorithm terminates after N iterations. Each iteration
requires O(n3) flops, and can be modified to O(N 2) by in-
troducing an additional recursion for R̂Pn. Note that even
the notation R̂, which represents 1

K XXH , is present in the
formulas, the nth iteration only depends on the lower dimen-
sional data block X1:n instead of the whole data block X.

One advantage of the proposed algorithm is its ability to
reduce computational power while maintaining an accurate
estitmate. Based on the fact that the elements in a steer-
ing vector are often not equally perturbed, the algorithm can
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Fig. 1. MSE versus SNR.

process the data from the sensors that are known a priori
to have a small uncertainty level, and terminate the iteration
prior to processing all the available data. The order of iter-
ation may be chosen according to the error statistics about
the steering vector. Note that the proposed algorithm does not
necessarily outperform the cross-spectral reduced-rankWiener
filter or the multistage Wiener filter presented in [10]. It, how-
ever, provides an iteration algorithm to compute the MMSE
estimate through successive incorporation of data from addi-
tional sensors without knowing a priori the size of the whole
steering vector, N .

4. SIMULATIONS

The performance of the Bayesian beamformer is compared
against two robust beamformers, namely the loaded Wiener
filter [5] and the robust beamformer with worst case optimiza-
tion [6], in terms of both MSE and output SINR. A uniform
linear array with 10 array elements is considered. The desired
signal power is σ2

s = 1. The presumed pointing direction is
00 such that ā = [1, . . . , 1]T . An interferer with power 30dB
above the noise level and 300 away from the desired signal
is present. The error covariance matrix C is assumed to be
diagonal as in (26) with

δn = αen, n = 1, . . . , N, (29)

where α is the scaling factor that ensures tr(C) = 1. The
optimal MSE and SINR are achieved by the Wiener filter in
(6) with perfect knowledge of the steering vector. The loaded
Wiener filter is given by

w = σ2
s(R̂ + ξI)−1ā (30)

where the loading level ξ is 10 times the noise level in a sin-
gle sensor. The upper bound on uncertainty set of the worst
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Fig. 2. Output SINR versus SNR.

case robust beamformer is set to ε =
√

tr(C), i.e., the ex-
pected norm of the error vector. Two Bayesian beamformers
are implemented, in which one terminates after 10 steps of
the proposed algorithm and one terminates after 5 steps. A
small diagonal loading term with 3dB above the noise level is
added to all the beamformers. Each plot is obtained from 200
simulation runs.

Figure 1 and Figure 2 show the performance of the beam-
formers versus the signal-to-noise ratio (SNR) at K = 50
and Figure 3 shows the MSE of the beamformers against the
data size K when the SNR is 0dB. The Bayesian beamformer
gives the lowest MSE. Its output SINR is within 3dB be-
low the worst case robust beamformer. The effectiveness of
the Bayesian beamformer is mainly due to the incorporation
of the prior statistics about the steering vector error and its
MMSE nature. The performance of the 5-step Bayesian beam-
former is close to the 10-step Bayesian beamformer in terms
of both MSE and output SINR even if the computational cost
is greatly reduced. This is because the data collected from the
last 5 array elements are known in a priori to be highly de-
fected, and thus their contributions in the 10-step beamformer
do not induce any significant improvement in performance.
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