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ABSTRACT

We address the problem of tracking a maneuvering target that
moves along a region monitored by a sensor network, whose nodes
(including both the sensors and any data fusion centers, DFCs) are
located at unknown positions. Thus, the node locations and the
target track must be estimated jointly without the aid of beacons.
We assume that the network consists of a collection of sensors and
at least four DFCs. Each DFC collects and integrates the sensor
measurements and can exchange data with the other DFCs. Within
this setup, we propose a three-stage Monte Carlo method to (i)
acquire rough initial estimates of the network node locations, (ii)
track the target and refine the node position estimates individually
at each DFC and (iii) fuse the results obtained by all the DFCs.
The validity of the method is illustrated by computer simulations
of a network of power-aware sensors and exactly four DFCs.

1. INTRODUCTION

Sensor networks will soon become ubiquitous because of their
suitability for a broad range of emerging applications, such
as environmental monitoring, surveillance and security, vehicle
navigation, tracking, logistics, etc... For virtually any of these
applications, the accurate localization of the sensors is a key task.
Indeed, automatic node positioning has been recognized as an
enabling technology, since the data measured by a sensor is hardly
useful unless it is precisely known where it has been collected
[1]. Most sensor localization algorithms rely on the availability
of beacons, i.e., network nodes with known position that can be
taken as reference [1]. Although beacon-free network designs are
feasible [2], they usually involve complicated energy-consuming
local communications among nodes that should ideally be simple
and devoted to sensing and transmitting data.

In this paper, we address the problem of using a network
of distance-aware sensors with unknown locations to track a
maneuvering target. We assume that there are no beacons
available, which implies that the positions of the control nodes
in the network, that we will hereafter term data fusion centers
(DFCs), are also unknown. We consider networks in which the
sensors can only collect and broadcast measurements, while there
are at least four DFCs with (point-to-point) communication and
sensing capabilities. Within this setup, we propose a three-stage
Monte Carlo method to (i) acquire rough initial estimates of the
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network node locations, (ii) track the target and refine the node
position estimates individually at each DFC and (iii) coherently
combine the results obtained by the DFCs.

The remaining of the paper is organized as follows. In Section
2, we provide a mathematical model of the class of systems under
consideration. The proposed algorithm is described in Section 3.
In Section 4 we present illustrative computer simulation results for
a network of power-aware sensors and exactly four DFCs. Finally,
Section 5 is devoted to the conclusions.

2. SYSTEM MODEL

We assume that the target moves along a 2-dimensional region
according to the linear model [3]

xt = Axt−1 + qut, t = 1, 2, 3, . . . (1)

where xt = [rt, vt]
� ∈ C

2 is the target state, which includes
its position and its velocity at time t, rt ∈ C and vt ∈ C,

respectively; A =

»
1 Ts

0 1

–
is a transition matrix that depends

on the observation period, Ts; q = [T 2
s /2, Ts]

� and ut ∼
CN(ut; 0, σ2

u) is a complex Gaussian noise term with zero mean
and variance σ2

u. The initial target state, x0, has a known prior
probability density function (pdf), p(x0).

The Ns sensors in the network are located at fixed unknown
positions s1:Ns := {s1, s2, . . . , sNs} with uniform prior pdf on
the region of interest, R, i.e., sn ∼ U(R) ∀n. The n-th sensor
measurement at time t is denoted as yn,t = fs(dn,t, ε), where
dn,t = |rt − sn| is the distance between the target and the sensor
and ε is a random perturbation with known pdf. An Nt × 1
vector of measurements, yt := [yκ(1),t, . . . , yκ(Nt),t]

�, where
κ(i) ∈ {1, . . . , Ns}, is broadcast to the DFCs at time t. Note
that not every sensor transmits at every time. Indeed, it is often
convenient (in order to reduce energy consumption) that only a
subset of sensors become active and transmit their measurement,
hence Nt ≤ Ns.

The n-th DFC, n = 1, ..., Nc, is located at the unknown
position ro

n ∈ C, with known prior pdf p(ro
n), and collects Nt

sensor measurements at time t. We also assume that the DFC has
the capability to extract some distance related magnitude from the
communication signals transmitted by the sensors. For simplicity,
let us assume the same type of measurement carried out at the
sensors, hence the n-th DFC also has at its disposal the Nt × 1
data vector zn,t = [zn,κ(1),t, . . . , zn,κ(Nt),t]

�, where zn,i,t =
fs(d

c
n,i,t, ε), dc

n,i,t = |si,t − ro
n| is the distance between the i-th

sensor and the n-th DFC and ε is a random perturbation.
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Our goal is to jointly estimate the target track x0:t :=
{x0, . . . ,xt}, the sensor locations, s1:Ns , and the DFC positions,
ro
1:Nc

, from the sequence of data vectors y1:t := {y1, . . . ,yt}
and z1:Nc,1:t := {z1,1, . . . , z1,t, z2,1, . . . , zNc,t} without the
aid of beacons. Note that, because of the use of distance-aware
measurements and the lack of any absolute reference position, the
estimates will be subject to an inherent rotation ambiguity.

3. ALGORITHM

The proposed method consists of three stages, that we outline
below.

Stage 1. Acquisition: Initial rough estimates of s1:Ns and
ro
1:Nc

are computed by (approximately) solving the optimization
problems

r̂o
1:Nc,0 = arg max

r̃o
1:Nc

8<
:

Y
i�=l

p(πc
il|r̃o

i , r̃o
l )p(r̃o

1:Nc
)

9=
; (2)

ŝn,0 = arg max
s̃n

(
NcY
l=1

p(πs
nl|r̂o

n,0, s̃n)

)
, (3)

n = 1, ..., Ns, where πc
il is a measurement obtained at the l-th

DFC from a signal transmitted by the i-th DFC (hence, i �= l)
and πs

nl is a measurement obtained at the l-th DFC from a signal
transmitted by the n-th sensor. Apparently, this step requires that
each DFC and each sensor transmit at least one signal burst that
can be collected by the other DFC nodes in the network. Also
note that both r̂o

1:Nc,0 and ŝn,0 are maximum a posteriori (MAP)
type of estimators (although the prior p(sn) is uniform, and hence
omitted, in (3)).

Stage 2. Tracking: We propose an auxiliary particle filter
(APF) algorithm for state estimation in dynamic systems with
unknown fixed parameters derived according to [4]. An APF
is independently run at each DFC so that, at any prescribed
time t, we obtain Nc approximately-MAP estimates, specificallyn
xMAP

0:t (i), sMAP
1:Ns,t(i), r

o,MAP
i,t (i)

oNc

i=1
(note that each DFC

estimates its own location). The efficiency of the APF is improved
by drawing the initial set of particles (samples in the space
of (x0, s1:Ns , ro

1:Nc
)) in a neighborhood of the initial estimates

r̂o
1:Nc,0 and ŝn,0.

Stage 3. Fusion of estimates: The approximately-MAP
estimates produced by the DFCs are fused taking into account that
they may have different rotations (because of the insensitivity of
distance-aware measurements to the angle between the transmit
and receive nodes). Thus, we keep the estimate from the first FDC
fixed and rotate the others by angles

θ̂i,t = arg min
θ∈[0,2π)

(
tX

k=0

‚‚‚ejθxMAP
k (i) − xMAP

k (1)
‚‚‚2

2

)
, (4)

i = 2, 3, 4, where j =
√−1, i.e., we rotate the track estimates of

DFCs 2, 3 and 4 to minimize the mismatch with the track estimate
of DFC 1.

3.1. Acquisition

We assume that the πc
il and πs

nl measurements used in (2) and
(3), respetively, are also functions of distance, namely πc

il =
fc(|ro

i − ro
l |, ε) and πs

nl = fc(|sn − ro
l |, ε) for some function

fc and random perturbations ε. The difficulty for solving (2) is
the relatively large dimensionality of the problem, since Nc ≥ 4
complex parameters must be jointly optimized. On the contrary,
once r̂1:Nc,0 has been computed, the positions of the sensors can
be selected independently.

For “static” problems like (2) and (3) (which have no
simple analytic solution), we propose to apply the accelerated
random search (ARS) algorithm [5] described in Table 1 for a
general minimization problem (its application to maximization is
straightforward).

Problem: α̂ = arg minα∈A g(α) for some function g.
Denote: rmin > 0, the “minimum radius”; rmax > rmin, the
“maximum radius”; rmax ≥ rn ≥ rmin the radius at the
n-th iteration; c > 1 the “contraction” factor; αn the solution
obtained after the n-th iteration; and

Bn := {α̃ ∈ A : ||α̃ − αn||2 < rn},
where || · ||2 indicates 2-norm.

Algorithm: given rn and αn,
(1) Draw α̃ ∼ U(Bn).
(2) If g(α̃) < g(αn) then αn+1 = α̃ and rn+1 = rmax,

else αn+1 = αn and rn+1 = rn/c.
(3) If rn+1 < rmin, then rn+1 = rmax.
(4) Go back to (1)

Table 1. Iterative ARS algorithm for a minimization problem.
Parameter α is possibly multidimensional (typically, α ∈ C

n).

3.2. Tracking

The aim is to track the sequence of states x0:t, and improve the
estimation of s1:Nt and ro

1:Nc
, given the measurements y1:t and

z1:Nc,1:t. We propose to use an APF algorithm based on [4]
at each DFC. The APF is a recursive algorithm that generates
a sequence of discrete probability measures, denoted Ωt =

{(xt, s1:Ns,t, r
o
n,t)

(i), w
(i)
t }M

i=1, that approximate the posterior
pdf’s of the unknowns, i.e., for n ∈ {1, . . . , Nc},

p(xt, s1:Ns , ro
n|y1:t, zn,1:t) ≈ pM (xt, s1:Ns , ro

n|y1:t, zn,1:t)

=
PM

i=1 δi(xt, s1:Ns , ro
n)w

(i)
t , (5)

where δi(xt, s1:Ns , ro
n) = 1

if (xt, s1:Ns , ro
n) = (xt, s1:Ns,t, r

o
n,t)

(i) and 0 otherwise. The

samples, x
(i)
t , s

(i)
1:Ns,t and ro

n,t
(i) (for i = 1, ..., M ) are called

particles and the probabilities w
(i)
t (note that

PM
i=1 w

(i)
t = 1)

are called weights. When the time t measurements, yt and
zn,t, become available, Ωt is recursively computed from Ωt−1 as
indicated in Table 2.

The proposed APF algorithm is based on the relationship

p(xt, s1:Ns , ro
n|y1:t, zn,1:t) ∝ p(yt, zn,t|xt, s1:Ns , ro

n)×
×p(xt|s1:Ns ,y1:t−1)p(s1:Ns , ro

n|y1:t−1, zn,1:t−1) (6)

and the approximations

pM (xt|s1:Ns ,y1:t−1) =
PM

i=1 p(xt|x(i)
t−1)δi(s1:Ns)w

(i)
t−1 (7)

pM (s1:Ns , ro
n|y1:t−1, z1:t−1) =

PM
i=1 w

(i)
t−1Ki(s1:Ns , ro

n),(8)

where Ki(·) is a symmetric kernel. For the latter, we have chosen

Ki(s1:Ns , ro
n) = CN(s1:Ns , ro

n|µ(i)
t−1, h

2Σt−1) (9)
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t = 0: Draw x
(i)
0 ∼ p(x0), s

(i)
1:Ns,0 ∼ N(s1:Ns |ŝ1:Ns,0, σ

2
s,0)

and ro
n,0

(i) ∼ N(ro
n|r̂o

n,0, σ
2
r,0).

t: Given Ωt−1 =
n`

xt−1, s1:Ns,t−1, r
o
n,t−1

´(i)
, w

(i)
t−1

oM

i=1
:

(1) Compute x̃
(i)
t = Ax

(i)
t−1, i = 1, ..., M .

(2) Draw indices �(i) ∼ qt(�), i = 1, ..., M , where

qt(�) ∝ w
(�)2

t−1p(yt, zn,t|x̃(�)
t , s

(�)
1:Ns,t−1, r

o
n,t−1

(�)).

(3) Draw
`
s1:Ns,t, r

o
n,t

´(i) ∼ qt(s1:Ns , ro
n|�(i)),

where qt(s1:Ns , ro
n|�(i)) = N(s1:Ns , ro

n|µ(�(i))
t−1 , h2Σt−1),

for i = 1, ..., M .

(4) Draw target states x
(i)
t ∼ p(xt|x(�(i))

t−1 ), i = 1, ...M ,

and build the trajectory x
(i)
0:t = {x(�(i))

0:t−1,x
(i)
t }.

(5) Update the weights, for i = 1, ..., M ,

w
(i)
t ∝ p

“
y1:t,zn,1:t|x(i)

t ,s
(i)
1:Ns,t

,ro
n,t

(i)
”

p

„
y1:t,zn,1:t|(x̃t,s1:Ns,t−1,ro

n,t−1)
(�(i))

« .

(6) MAP estimation, io = arg mini∈{1,...,M}{w(i)
t },“

xMAP
t (n), sMAP

1:Ns,t(n), ro,MAP
n,t (n)

”
=

`
x0:t, s1:Ns,t, r

o
n,t

´(io)
.

Table 2. Liu and West’s APF algorithm for joint estimation of the
target trajectory, x0:t, and the fixed node locations, s1:Ns and ro

n

from the measurements available at the n-th DFC.

where

µ
(i)
t−1 = [s

(i)
1,t−1, . . . , s

(i)
Ns,t−1, r

o
n,t−1

(i)]� (10)

Σt−1 = diag{σ2
1,t−1, . . . , σ

2
Ns,t−1, σ

2
r,t−1} (11)

and h ∈ (0, 1) is a bandwidth factor. The kernel
modes are calculated as ro

n,t−1
(i) = aro

n,t−1
(i) + (1 −

a)ro
n,t−1 and s

(i)
k,t−1 = as

(i)
k,t−1 + (1 − a)sk,t−1, for a =√

1 − h2 and ro
n,t−1 =

PM
k=1 w

(i)
t−1r

o
n,t−1

(i), sk,t−1 =PM
k=1 w

(i)
t−1s

(i)
k,t−1. The variances, in turn, are found as

σ2
r,t−1 =

PM
l=1 w

(l)
t−1

˛̨̨
ro

n,t−1
(l) − ro

n,t−1

˛̨̨2
and σ2

k,t−1 =PM
l=1 w

(l)
t−1

˛̨̨
s
(l)
k,t−1 − sk,t−1

˛̨̨2
. This choice of µ

(i)
t−1 and Σt−1

ensures that the mean and marginal variance of every fixed
parameter given by the kernel approximation (8) is equal to the
corresponding mean and marginal variance given by the weights
[4].

One difficulty with the approximations (7) and (8) is that they
involve mixtures of a typically large number (M ) of pdf’s. We
avoid this limitation by incorporating a discrete auxiliary random
variable � ∈ {1, ..., M} that indicates the terms in (7) and (8) to
be selected. In particular, we define

p(xt, s1:Ns , ro
n, �|y1:t, zn,1:t) ∝ p(yt, zn,t|xt, s1:Ns , ro

n)×
×p(xt|x(�)

t−1)w
(�)2

t−1K�(s1:Ns , ro
n). (12)

Using (12) we can easily draw particles and compute weights
by applying the principle of importance sampling (IS) [6]. In
particular, we define a suitable importance function, or proposal
pdf,

qt(xt, s1:Ns , ro
n, �) = qt(�)qt(s1:Ns , ro

n|�)p(xt|x(�)
t−1) (13)

(see Table 2 for the details) that we use for drawing new particles
and then update the weights as

w
(i)
t ∝

p
“`

xt, s1:Ns,t, r
o
n,t, �

´(i) |y1:t, zn,1:t

”
qt

“`
xt, s1:Ns,t, ro

n,t, �
´(i)

” , i = 1, . . . , M.

(14)
The auxiliary variables are discarded before proceeding to time
t + 1.

We finally note that, given Ωt, it is straightforward to produce
estimates of the target trajectory and the node locations (in
particular, it is enough to select the particle with the largest weight,
as shown in Table 2). Thus, at any given time t, the n-th DFC can
produce an approximate MAP estimate of x0:t, s1:Ns and ro

n.

3.3. Fusion of estimates

After the second stage, we have obtained

estimates
“
xMAP

0:t (n), sMAP
1:Ns,t(n), ro,MAP

n,t (n)
”

, n = 1, ..., Nc,

which are not necessarily coherent because of the insensitivity
to rotations of the measurements y1:t and zn,1:t. Therefore,
we search for adequate phase rotations θn,t, n = 1, ..., Nc,
that enable coherent combination, by solving the set of problems
given by (4). The same as in the acquisition step, we may use
the ARS algorithm to search the desired solutions. Once they
are found, the Nc MAP estimates are fused to yield xMAP

0:t :=PNc
n=1 ejθ̂n,txMAP

0:t (n), sMAP
1:Ns,t :=

PNc
n=1 ejθ̂n,tsMAP

1:Ns,t(n) and

ro,MAP
n,t := ejθ̂n,tro,MAP

n,t (n), where θ̂1,t = 0.

4. COMPUTER SIMULATIONS

In order to provide illustrative numerical results, we have
particularized the model of Section 2 to a network of power-aware
sensors. Thus, the measurement functions fs and fc are equal,

fs(d, ε) = fc(d, ε) = 10 log10

„
1

d2
+ η

«
+ ε, (dB) (15)

where ε ∼ N(ε|0, 1) and η = 10−6 accounts for the power of
the background noise (−60 dB). The n-th sensor transmits its
measurement, yn,t, only if it corresponds to a distance dn,t <
50 m (i.e., yn,t > −33.97 dB) and otherwise remains silent.
The noise term is standard Gaussian, ε ∼ N(ε|0, 1). As a
consequence, all likelihood functions are Gaussian, namely

p(yt, zn,t|x̃t, s̃1:Ns , r̃o
n) =QNt

i=1 N
`
yκ(i),t|fs(|r̃t − s̃κ(i)|, 0), 1

´ ×
×N

`
zn,κ(i),t|fs(|r̃o

n − s̃κ(i)|, 0), 1
´
, (16)

p(πc
il|r̃o

i , r̃o
l ) = N (πc

il|fc(|r̃o
i − r̃o

l |, 0), 1) , (17)

p(πs
nl|r̂o

l,0, s̃n) = N
`
πs

nl|fc(|s̃n − r̂o
l,0|, 0), 1

´
. (18)

Since the prior p(ro
2:4) is also Gaussian, it is apparent that (2) and

(3) become nonlinear least squares minimization problems.
There are Nc = 4 DFCs and Ns = 20 sensors in the network.

We assume ro
1 = 0, while the others are a priori distributed as

ro
2:4 ∼ CN

`
30 × [−1, 1 + j, 1 − j]�, 25I3

´
. This prior pdf is

used to draw an initial guess of ro
2:4 which is used as input to the

ARS algorithm that solves (2), the other parameters being c = 2,
rmax = 10, rmin = 10−4. The ARS algorithm for problem (3)
receives as inputs a sensor position drawn from U(R) (where R
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Fig. 1. Simulation parameters: Ts = 0.25 s, Nc = 4, Ns = 20, M = 3000 particle. Left: Estimate of the target trajectory during 70 s.
Middle: Estimate of the target velocity on the real axis. Right: Estimate of the target velocity on the imaginary axis.

is the square centered at 0 with sides of length 100 m), rmax = L,
rmin = 10−4 and c = 2. The ARS procedure is iterated 3000
times for r̂o

2:4,0 and 1000 times for each ŝk,0, k = 1, ..., Ns.
The state prior is p(x0) = CN

`
x0|[0, 0]�, diag{10, 0.1}´

and the state noise is distributed as ut ∼ CN(0, 0.1) (which is
used for drawing the x

(i)
t particles in the APF). Finally, the fusion

of the estimates is carried out by solving (4) via an ARS algorithm
with random initial guess in [0, 2π), rmax = π, rmin = 10−5 and
c = 2. The ARS procedure is iterated 1000 times.

Figure 1 shows the results of a typical simulation run with
observation period Ts = 0.25 s, 70 s of total simulated time
and M = 3000 particles in the APF. The left plot depicts the
target trajectory on the complex plane and the track obtained by
the fusion of the trajectory estimates from the Nc = 4 APFs.
The middle and right plots show the fused estimates of the target
velocity on the real and imaginary axis, respectively.

In order to estimate the average performance of the proposed
method, we have carried out 40 independent computer simulations
(each one with a different network deployment and target
trajectory) and computed the mean absolute error (MAE) in the
estimation of the target position, its velocity, the sensor locations
and the DFC locations. The results are presented in Table 3 and
illustrate the effectiveness of the method. Beware that the resulting
global estimates may still be rotated with respect to the true
trajectory and node locations. Although this problem is mitigated
when a non-uniform prior pdf of the DFCs is available (as it is the
case in this example), a further phase correction (applied to the
global estimate) is necessary in order to obtain meaningful error
values.

rt vt sk ro
n

1.9602 m 0.3794 m/s 7.2284 m 3.1214 m

Table 3. Mean absolute error (MAE) in the estimation of the target
position, rt, given in m; the target velocity, vt, in m/s; the position
of a single sensor, sk, k ∈ {1, ..., Ns}, in m; and the position of a
single DFC, ro

n, n ∈ {2, 3, 4}, in m.

5. CONCLUSIONS

We have proposed a Monte Carlo methodology that allows to
jointly estimate the positions of the nodes of a sensor network

(including both the sensors and the DFCs) and track a target that
moves along the region monitored by the network. The method
does not require the aid of beacons. Instead, a three-step procedure
is carried out, that includes: (i) the acquisition of (rough) initial
node location estimates by a random search optimization of the
posterior probability of the node positions given a set of distance-
aware measurements; (ii) target tracking and refinement of the
node position estimates using a suitably designed auxiliary particle
filter running independently at each DFC; and (iii) fusion (coherent
combination) of the estimates provided by the different DFCs.
We have presented computer simulation results that illustrate the
successful application of the method with a network of power-
aware sensors.
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