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ABSTRACT
We develop an efficient distributed sequential Bayesian estima-

tion method to localize a diffusive source in wireless sensor net-

works. Potential applications include security, environmental mon-

itoring, pollution control, and explosives detection. We first derive

the physical model of the substance dispersion by solving the dif-

fusion equations under different environmental scenarios. We then

integrate the derived dispersion models into the distributed process-

ing technologies, and propose a distributed sequential Bayesian lo-

calization technique, in which the state belief is transmitted in the

wireless sensor networks and updated using the measurements from

the new sensor node. In order to decrease the required communica-

tion burden we propose two parameterizable belief approximations:

a Gaussian approximation and a new linear combination of polyno-

mial Gaussian approximation. We also apply the idea of information-

driven sensor scheduling and select the next sensor node according

to certain criterions to reduce the response time and save energy con-

sumption of the sensor network.

1. INTRODUCTION

In this paper we address the problem of developing efficient dis-

tributed parameter estimation methods to localize a diffusive source

using wireless sensor networks. The proposed methods can be eas-

ily extended to other applications related to monitoring diffusion

phenomena. Potential applications include security, environmental

monitoring, pollution control, and explosives detection.

Recently, wireless sensor networks have been the object of in-

tensive interest in the research community [1]. Inexpensive, smart

nodes with multiple on-board sensors, networked through wireless

lines as well as Internet and deployed in large numbers, interact

intelligently with the physical world. In a typical wireless sensor

network, each node operates unattended with limited battery power

and limited signal-processing capability; it communicates wirelessly

with the other nodes in its radio communication range. These wire-

less communications consume a significant part of the available en-

ergy, and hence dominate the life of the wireless sensor network.

Therefore, to solve these problems, the essential point of this paper

is to propose a distributed parameter estimation method based on a

sequential Bayesian approach and information-driven dynamic col-

laborative information processing [2]. The proposed methods are

suitable for the strict constraints on the power and computational

capabilities of the sensor nodes, and hence can be implemented ef-

ficiently in wireless sensor networks. In our previous work, we pro-

posed model-based integrated biochemical sensor array processing
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methods for detecting and estimating dispersions in realistic envi-

ronments [3]. However, these methods use centralized processing

approaches, and cannot be directly used in wireless sensor networks.

We first derive the physical models for the spatial and temporal

concentration distribution of the dispersed substance from a diffu-

sive source by solving the diffusion equations under different initial

conditions and environmental scenarios. We then transform the dis-

persion models to parametric statistical measurement models, and

develop a distributed parameter estimation method using a sequen-

tial Bayesian approach. The main idea here is that the posterior den-

sity function, also known as the belief, of the parameters of interest

is updated incrementally when new measurements are obtained, un-

til a desired performance threshold is satisfied. The estimates of the

parameters are calculated from the obtained belief according to some

criteria. In contrast to the ordinary sequential Bayesian methods in

which the belief is updated sequentially in the time domain [4], in

our method the belief is transmitted in the sensor network and up-

dated incrementally in the space domain. Since the information is

transmitted only between sensor nodes and their neighbors, a fusion

center is not needed; hence, we realize a fully distributed estimation.

The derived dispersion models yield statistical measurement mod-

els that are highly nonlinear and non-Gaussian, especially when nui-

sance parameters appear. Therefore, existing recursive Bayesian es-

timation methods [5] cannot be directly applied. Some possible al-

ternative methods, such as sequential Monte Carlo methods [4], are

also inapplicable because they require large data transmissions be-

tween the sensor nodes. Since decreasing the power consumption

is always an important issue in wireless sensor networks, in our

methods we propose to approximate the belief by a family of pa-

rameterizable probability distributions and transmit the belief para-

metrically; therefore, we decrease the communication requirements

dramatically. We propose two parametric belief representations: a

Gaussian approximation and a new linear combination of polyno-

mial Gaussian (LPG) function approximation.

In Section 2 we derive the physical and statistical measurement

models of the diffused substance. In Section 3 we present the pro-

posed distributed sequential Bayesian estimation method. Numeri-

cal examples are given in Section 4 to illustrate the performance of

proposed method.

2. PHYSICAL AND MEASUREMENT MODELS

In this section we first derive computational physical models describ-

ing the space-time substance dispersion mechanisms under various

environmental scenarios; then we transform the dispersion model to

a statistical measurement model.
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2.1. Physical Models for Dispersion
We model the transport of a substance from a diffusion source by

solving the diffusion equation. Various initial and boundary condi-

tions and environmental effects are considered according to differ-

ent scenarios. We first compute the concentration for a stationary

impulse point source to find the Green function; then we extend the

results to a continuous source by integrating the source release rate

with the Green function.

(i) Stationary impulse source: Let c(r, t) denote the concentra-

tion of the diffused substance at a position r = (x, y, z) and time t.
For a source-free volume and space-invariant diffusivity κ, the con-

centration of a dispersed substance follows the diffusion equation

∂c(r, t)

∂t
= κ∇2c(r, t) = κ

�
∂2c(r, t)

∂x2
+

∂2c(r, t)

∂y2
+

∂2c(r, t)

∂z2 � .

(1)

The appropriate boundary and initial conditions are applied to solve

this differential equation. For simplicity of the presentation, we con-

sider the diffusion equation only in the z dimension. It can be easily

extended to the three-dimensional cases.

Initial and boundary conditions: In order to calculate the Green

function, we assume that there is an impulse point source of a unit

mass release rate stationary at z = z0, i.e., the initial condition is

cz(z, t) = δ(z−z0)δ(t− tI), where tI is the initial release time. We

assume a homogeneous semi-infinite medium in the region z > 0
that can be used to model the diffusion in air above the ground. For

a generally permeable boundary condition, a reasonable assumption

is the rate of loss of the diffusing substance is proportional to the

actual concentration in the surface at any time [3], i.e.,

−κ
∂cz

∂z
= −αcz at z = 0, (2)

where α is a constant of proportionality.

Solutions: Solving the diffusion equation under an impermeable

boundary condition and the above initial conditions, we obtain the

solution

cz(z, t)

=
1

2 � πκ(t − tI) � exp

�
− (z − z0)

2

4κ(t − tI) � + exp

�
− (z + z0)

2

4κ(t − tI) � � .

(3)

This solution can also be interpreted as a superposition of contri-

butions from the actual source and a mirror-image source of equal

magnitude at z = −z0.

External forces: In the presence of external forces such as wind,

flow, and gravity, the diffusion equation (1) takes the form

∂cz

∂t
= κ

∂2cz

∂z2
− vz

∂cz

∂z
, (4)

where vz represents the wind speed in the z direction. The second

term on the right-hand side is called advection. We can reduce the

above problem to the ordinary diffusion equation without the advec-

tion term by applying the following transformation

cz = c∗z exp � vz

2κ
(z − z0) − v2

z(t − tI)

4κ � (5)

to the differential equation (4); then, we can implement the same

procedures in the previous sections to solve this type of problem.

Turbulence: We also note that in most problems, air turbulence

can have significant impact on the concentration distribution. How-

ever, the above solution still holds as a reasonable approximation in

many cases, with only a larger diffusivity, typically from 102 to 1010

times larger [3].

(ii) Continuous sources: A solution for a continuous source is

deduced from the corresponding Green function by integrating it

with the source release rate function. Suppose that we have a station-

ary point source continuously releasing a substance at a mass rate

µ(t). Let cGreen(r, t) denote the Green’s function of the impulse

source case. Then the concentration of a continuous point source is

obtained using the integral:

c(r, t) = � t

tI

µ(τ)cGreen(r, t − τ) dτ. (6)

2.2. Measurement Models
To model the measurements, we consider a spatially distributed wire-

less sensor network. Each sensor node in this network is located

at a known position and can measure the substance concentration

from the diffusive sources. Assuming the physical models derived

above represent the underlying dispersion mechanism, we obtain a

measurement model for a sensor node at a position {ri} and taking

measurements at time {tj} as

y(ri, tj) = c(ri, tj) + b + e(ri, tj), e(ri, tj) ∼ N (0, σ2), (7)

where c(ri, tj) is the concentration of interest; b is a bias term, rep-

resenting the sensor’s response to foreign substances and assumed

to be a unknown constant; and e(ri, tj) is the sensor’s noise, as-

sumed to be Gaussian distributed, independent in time and space.

For the simplicity of presentation we assume the source’s substance-

releasing rate is time invariant, and we denote yij = y(ri, tj),

eij = e(ri, tj), and µaij(θ) = c(ri, tj) where θ represents the

unknown source and medium parameter vector.

Nuisance parameters: For a 2D localization problem, only the

source position parameters (x0, y0) are of interest; others are nui-

sance parameters. For these nuisance parameters, some of them, e.g.,

κ, b, and σ2 can be measured during the calibration phase. For the

remaining nuisance parameters, e.g., source release rate µ, we can

remove them by integration as follows. We first assume an a priori
probability density function (PDF) for µ, which is a uniform dis-

tribution between µlow and µhigh. Denote the unknown parameter

vector as θ = [x0, y0]
T. Consequently, according to the measure-

ment model in (6), the marginal PDF of yij given θ is

p(yij | θ) = � p(yij | θ, µ)p(µ) dµ. (8)

3. DISTRIBUTED SEQUENTIAL BAYESIAN ESTIMATION

In this section, we first develop the proposed distributed sequential

Bayesian estimation algorithm to localize a diffusive source in wire-

less sensor networks. We then propose two parametric belief repre-

sentations: Gaussian approximation and LPG function approxima-

tion. Finally, we discuss the sensor node selection strategies.

3.1. Distributed Sequential Bayesian Estimation Algorithm
The proposed scheme of localizing a diffusive source has two phases:

the measuring phase and the estimation phase. In the measuring

phase, the activated sensor nodes for such a task measure the sub-

stance concentration at specific time samples tj , j = 1, . . . , N , and

then return to sleeping status. In the estimation phase, we process

a sequential Bayesian algorithm activated by an initial sensor node,

to localize the diffusion source. Here, we denote the collection of

all measurements at the ith sensor node by yi, and the measurement

sequence up to the ith sensor node by y1 : i.
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In wireless sensor networks, because of their energy limitation

and failure tolerance properties, the usually centralized Bayesian es-

timation methods cannot be practically directly applied. Hence, we

propose a distributed sequential Bayesian estimation, in which the

state belief is transmitted in the sensor network and updated using

the previous information and the measurements at the current node.

Suppose the current ith sensor node obtains the belief passed from

the (i− 1)th sensor node as p(θ | y1 : i−1), and the likelihood func-

tion of the observation at the ith sensor node is p(yi | θ). We make

the following conditional independence assumption:

A1: Conditioned on θ, the measurements at the current sensor

node yi are independent of the measurements at the previous

sensor node y1 : i−1, i.e.,

p(yi | θ, y1 : i−1) = p(yi | θ). (9)

Then, we can prove that using yi we can update the belief to p(θ |
y1 : i) by applying the Bayesian rule as

p(θ | y1 : i) =
p(yi | θ)p(θ | y1 : i−1)�
p(yi | θ)p(θ | y1 : i−1) dθ

. (10)

At the first sensor node where i = 1, we have

p(θ | y1) =
p(y1 | θ)π(θ)�
p(y1 | θ)π(θ) dθ

, (11)

where π(θ) is the prior PDF for the location θ. Therefore, the cur-

rent minimum-mean-squared error (MMSE) estimate at sensor node

i can be calculated as�
θ = E[θ | y1 : i]

=

�
θp(yi | θ)p(θ | y1 : i−1) dθ�
p(yi | θ)p(θ | y1 : i−1) dθ

. (12)

In Equation (10) we observe that the current belief is a product

of the previous belief and the current likelihood function (up to a

normalized coefficient), which provides us with a sequential algo-

rithm to update the belief. In the algorithm, we need to transmit

the current belief to the next sensor node. Considering the strict

power and resource constraints in wireless sensor networks, we pro-

pose to approximate the state belief by a family of parameterizable

distributions, through which we decrease the communication burden

significantly.

3.2. Belief Approximation
We propose two parametric distribution approximations: a Gaussian

approximation and a new approach — a linear combination of poly-

nomial Gaussian (LPG) approximation. In both of these methods,

we consider the accuracy of the approximation as well as decreasing

the computation complexity to fit the limited processing capability

of the sensor nodes.

(i) Gaussian approximation: For the continuous posterior distri-

bution function, there exists an asymptotic posterior normality prop-

erty [6] such that for a large number of observations, the poste-

rior function becomes highly peaked and behaves like a multivari-

ate normal density. Hence, we first propose to approximate the be-

lief p(θ | y1 : i) by a multivariate Gaussian distribution with mean

E[θ | y1 : i] and covariance Cov[θ | y1 : i] as

E[θ | y1 : i] =

�
θ � � N

j=1 p(yij | θ)� p(θ | y1 : i−1) dθ

� � � N
j=1 p(yij | θ) � p(θ | y1 : i−1) dθ

(13)

Cov[θ | y1 : i] = E � (θ − E[θ | y1 : i]) (θ − E[θ | y1 : i])
T | y1 : i � .

(14)

Thus, in order to update the belief, we need to transmit only the

above mean and covariance, with total of 5 scalars, to the next sensor

node for our current localization problem, which decreases the com-

munications required between sensor nodes dramatically. To calcu-

late the mean and covariance efficiently, we apply the Laplace ap-

proximation to calculate the integration in (13) and (14) (see [7] for

details). Even though the Gaussian approximation method leads to

low wireless transmission and low computational complexity, its ap-

proximation accuracy is not very high; hence it is suitable for cases

when the belief density is Gaussian-like, or the processing capacity

at the sensor node is very limited.

(ii) LPG function approximation: We propose to use a family of

LPG functions to approximate the belief. The PG functions repre-

sent Gaussian density functions multiplied by polynomials, and LPG

denotes a linear combination of PG functions. Using LPG functions

to approximate the belief in wireless sensor networks has the advan-

tages that (i) this approximation family is a natural generalization of

the Gaussian approximation, thus it provides higher approximation

accuracy that leads to lower total data transmission; (ii) any moments

of LPG functions can be evaluated analytically, which decreases the

computation complexity at each sensor node. In order to process the

approximation efficiently, we propose such an algorithm in which we

separate the whole approximation procedure into two phases: local

approximation and global approximation. That is, we first approxi-

mate the belief at several important peaks (peaks whose contribution

to the density cannot be ignored) using PG functions, and then we

create an optimal linear combination of these local expansions to

represent the global belief function.

(a) Local approximations: Here, we first localize the important

peaks of the belief, then apply an orthogonal family of PG functions

to approximate the density around each peak. For such an orthogo-

nal family we use the Hermite functions, which (up to normalization

factors) are given by a Gaussian density multiplied by Hermite poly-

nomials. Denote fl(θ | y1 : i) as the local approximation of the be-

lief around the lth peak, we have the orthogonal expansions in terms

of multivariate Hermite polynomials as

fl(θ | y1 : i) = φ(θ; µ, Σ) �
0≤ν1+ν2≤k

Cν · Heν (θ; µ, Σ) (15)

where k is the bounded degree of the polynomials; φ(x; µ, Σ) is the

multinormal probability density function; Heν (x; µ, Σ) denotes the

multivariate Hermite polynomials

Heν (x; µ, Σ) =
(−1)Σνi

φ(x; µ, Σ)

∂Σνi

∂xν φ(x; µ, Σ), (16)

here xν = xν1
1 · · ·xνn

n ; Cν are the expansion coefficients that need

to be determined. In our algorithm, for the multivariate Gaussian

density, we use the position of the peak as its mean µl, and let its

associated covariance matrix Σl be equal to the negative inverse of

the Hessian (at the peak) of the belief logarithm, i.e.,

Σl = (−Hl)
−1 = [−∇2Li(µl)]

−1
(17)

where Li(θ) = log p(θ | y1 : i); we calculate the expansion coeffi-

cients Cν using the least square (LS) method.

(b) Global approximations: After we calculate the local expan-

sions for all the peaks, we merge them to obtain a global approxima-

tion of the belief based on an optimal linear combinations. Then the

final global approximation is

f(θ | y1 : i) = �
l

λlfl(θ | y1 : i) (18)

where the combination coefficients λl are determined using linear

LS methods on a new global mesh of measurement points.
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3.3. Sensor Node Scheduling
In the proposed distributed sequential Bayesian estimation method,

we update the belief incrementally by incorporating the measure-

ments of other nearby sensor nodes. However, not all available

sensor nodes in the network provide useful information that im-

proves the estimate; furthermore, some information may be redun-

dant. Therefore, we need to select an optimal subset and an opti-

mal order of incorporating these measurements into our belief up-

date, which provides a faster reduction in estimation uncertainty and

incurs a lower communication burden. We propose to use the fol-

lowing two information utility measures: Mahalanobis distance and

covariance-based measure.

(i) Mahalanobis distance: At the current ith sensor node, the

utility function for selecting the next sensor node, with respect to the

current source position estimate characterized by the posterior mean
�

θi and covariance Σi, is defined as the negative of the Mahalanobis

distance, i.e.,

−(ri+1 −
�

θi)
TΣ−1

i (ri+1 −
�

θi), (19)

where ri+1 is the position of the next sensor node. This utility func-

tion is easy to calculate and works well under simple environmental

scenarios.

(ii) Covariance-based measure: In this case we derive utility

measures based on the covariance Σ of the posterior distribution

p(θ | y1 : i+1). In order to calculate this covariance matrix, we need

to obtain measurements from the nearby sensor nodes. In order to

avoid requiring the measurements from each neighboring node, we

propose to predict the covariance matrix according to the current be-

lief and the prior knowledge about the sensor positions and sensing

model.

4. NUMERICAL EXAMPLES

In this section, we present numerical examples to illustrate the per-

formance of our proposed distributed sequential Bayesian localiza-

tion method. We will compare the efficiency of the different belief

representation methods, and consider the influence of the diffusion

models and sensor selection criteria on the performance of the lo-

calization algorithms. In these examples, K = 300 wireless sensor

nodes are randomly deployed in a square area of 100 × 100 length-

units. For the diffusion model, we illustrate the environment as a ho-

mogeneous semi-infinite medium with impermeable boundary. We

use the scenario of a stationary source located at the boundary sur-

face, i.e., z0 = 0. The other parameters are taken to be µ = 1 Kg/s,

κ = 40 unit2/s, and tI = 0 s.

We first compare the performance of the proposed estimation

algorithm using the LPG approximation and the Gaussian approxi-

mation. The estimation bias and covariance with respect to the num-

ber of used sensor nodes are illustrated in Fig. 1. We observe that

the distributed estimation using the LPG approximation converges

to the true value much faster than the Gaussian approximation, since

the former provides us a more accurate belief representation. In

Fig. 1 we can see that when we use the LPG approximation, we

need to use only 7 sensor nodes to reach the performance thresh-

old det(Σ) = 10−5, whereas for the Gaussian approximation, we

need 20 nodes. In the next example, we assume there exists wind

in the medium with the speed v = (−20,−10) length-unit/s. We

implement the proposed distributed localization algorithm with two

different sensor selection criteria: the Mahalanobis distance and the

covariance-based measure. Their performance comparison is shown

in Fig. 2. We observe that the covariance-based measure performs

better than the Mahalanobis distance, which means the covariance-

based measure is more suitable for a complex scenario.
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Fig. 1. Estimation bias and log determinant of the estimation co-

variance vs. the number of sensor nodes used under different belief

representations: (a) Gaussian; (b) LPG.
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Fig. 2. As in Fig. 1, but for different sensor selection criteria: (a)

Mahalanobis distance; (b) covariance-based measure.

5. CONCLUSIONS

We addressed the problem of deriving efficient distributed estima-

tion methods to localize a diffusive source in wireless sensor net-

works. We integrated the underlying dispersion model into the sig-

nal processing technologies and proposed a distributed sequential

Bayesian estimation. We propose two parameterizable belief ap-

proximations: a Gaussian approximation and a new LPG approxima-

tion. We also apply the idea of information-driven sensor scheduling

and select the next sensor node optimally to reduce the response time

and save energy consumption of the sensor network.
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