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ABSTRACT

The detection and localization of an event through a sensor network
is a topic that has attracted considerable attention recently because
of many potential applications. Typically, these decisions are taken
by conveying the sensor measurements to a sink node that processes
the data and provides an estimate. However, the presence of a sink
node creates a bottleneck that is the cause of potential congestions
and it poses problems of scalability. In this work, we propose a
decentralized decision scheme that is capable to achieve optimal de-
cisions without requiring a fusion center. The network is composed
of a set of mutually coupled oscillators, where each node is coupled
only to the nearest nodes. We show how to achieve optimal detection
for both deterministic and random signals by properly selecting the
parameters of the coupling mechanism. Furthermore, if the nodes
know their own positions and the network is connected, we show
how to make each node able to perform a totally distributed energy-
based source localization.

1. INTRODUCTION

The fundamental challenge in the research on sensor networks fo-
cuses on the possible strategies to design networks composed of a
multitude of cheap, lightweight components that are possibly indi-
vidually inaccurate but, as a whole, are capable of providing overall
reliable decisions. Many efforts have been devoted to the optimiza-
tion of the mechanisms to convey local estimates or decisions to a
fusion center [1], [2]. However, it is precisely this intrinsic need
of gathering all relevant information at the sink nodes that makes
the whole process critical, as there may be congestions around the
sink node that may prevent important information to reach the con-
trol centers. Most of the current research on sensor networks to-
day aims at exporting part of the huge background of knowledge ac-
cumulated in telecommunication networks in the sensor field, with
the specific task of designing energy-efficient communication sys-
tems. However, in most applications, the requirements and con-
straints present in sensor networks are so different from the equiva-
lent values typically occurring in telecommunication networks that
it may be more advisable to shift the basic paradigm and devise to-
tally innovative decision and communication strategies. An inter-
esting alternative approach was proposed by Rabbat and Nowak in
[3], where in-network, or distributed, data processing is performed
on each node so that a parameter estimate is made circulate through
the network and, along the way, small adjustments are implemented
based on local data, in order to, possibly, reach an optimal esti-
mate. Along a conceptually similar framework, Hong, Cheow and
Scaglione [5] suggested the use of mutually coupled oscillators as
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the basic mechanism to reach network consensus without the need
for sending the data to a fusion center. The principle ensuring the
self-synchronization capability of the system proposed in [5], [4] re-
lied on a theorem proved by Mirollo and Strogatz in [6], where the
network was supposed to be fully connected. This assumption was
later removed by Lucarelli and Wang in [7], who proved that the only
really needed property is global connectivity, that is the property that
there is a path between each pair of nodes. This was a significant
step, as it relaxes the need for global coupling, as local coupling is
sufficient, provided that the global connectivity is guaranteed. The
oscillator and coupling model proposed in [5], [4], and [7] associates
the local estimate to the time shift of a pulse oscillator. However, es-
pecially for large scale network, this may create a problem, as the
information bearing time shift may become indistinguishable from
the propagation delay. In [9] it was proposed a different model able
to remove this potential ambiguity and to reach decentralized max-
imum likelihood estimates through mutual coupling among nearby
nodes. The aim of this work is to show how to exploit the model pro-
pose in [9] to achieve optimal detection and localization of spatially
distributed events through local coupling.

2. SELF-SYNCHRONIZATION OF LOCALLY COUPLED
OSCILLATORS

The proposed sensor network is composed of N nodes and each node
is equipped with four basic components: i) a transducer that senses
the physical parameters of interest (e.g., temperature, concentration
of contaminants, radiation, etc.); ii) a local detector or estimator that,
based on the sensed quantities, takes an initial decision; iii) a dynam-
ical system (termed oscillator, for simplicity) whose state evolves in
time according to a differential equation which is periodically ini-
tialized with the local decision and it is coupled with the states of
nearby sensors; iv) a radio interface that transmits the state of the
associated dynamical system and receives the state of nearby nodes.

Denoting by ωi a function of the initial local measurement taken by
node i, the dynamical system (oscillator) present in node i evolves
according to the following differential equation [8]

θ̇i(t) = ωi +
K

ci

N�

j=1

aij f [θj(t) − θi(t)], i = 1, . . . , N, (1)

where θi(t) is the state function of the ith sensor (θi(0) may be ini-
tialized as a random number); f(·) is a monotonically increasing
nonlinear odd function of its argument that takes into account the
mutual coupling between the sensors; K is a control loop gain; ci is
a coefficient that quantifies the attitude of the i-th sensor to adapt its
state as a function of the signals received from the other nodes: the
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higher is ci, the less is the attitude of the i-th node to change its orig-
inal decision ωi. The running decision, or estimate, of each sensor is
encoded in its pulsation θ̇i(t). The coefficients aij take into account
the local coupling between oscillators. We assume that two oscilla-
tors are coupled (i.e., aij �= 0), only if their distance is smaller than
the coverage radius of each sensor1. The global decision is taken as
the value assumed by the pulsation θ̇i(T ) after a time T from the be-
ginning of the mutual interaction among the nodes. The model (1),
in the case of f(x) = sin(x), ci = 1, and aij = 1, ∀i, j, was ex-
tensively studied by Kuramoto in the fascinating world of chemical
waves [10].

In the rest of the paper, we will denote the parameters ωi and
the functions θi(t) as the natural pulsations and the instantaneous
phases of the i-th oscillator, in accordance to Kuramoto’s terminol-
ogy. However, it is important to emphasize that in our model neither
ωi nor θi(t) are necessarily the pulsation and instantaneous phase of
a sinusoidal carrier. They are, in general, physical parameters whose
choice is dictated by implementation constraints. For example, the
oscillators may be pulsed oscillators, as in ultra-wideband systems,
where θi(t) is the instant in which the i-th node emits a pulse. In
this case, the information is carried by the rate with which the pulse
emission time varies with time, somehow mimicking the neurons ac-
tivity in the brain.

One of the properties that play a fundamental role in the overall sys-
tem synchronization is the network connectivity, that is the property
that each node is linked to each other node through a proper path.
To make explicit the network connectivity properties, it is better to
rewrite (1) introducing the so called incidence matrix B, defined as
follows. Given an oriented graph G composed by N vertices and E
edges, B is the N × E matrix with elements

Bij =

��
�

1, if the edge j is incoming to vertex i;
−1, if the edge j is outcoming from vertex i;

0, otherwise.
(2)

Given the N ×1 vector 1N , composed of all ones, it is easy to check
that the incidence matrix satisfies the following property:

1
T
B = 0

T . (3)

Given B, the symmetric N×N matrix L, defined as L := BB
T , is

called the Laplacian of G. The Laplacian has several important prop-
erties: L is always semi-definite positive with the smallest eigen-
value always equal to 0; the algebraic multiplicity of the null eigen-
value is equal to the number nc of connected components of the
graph. Hence, if the graph is connected, nc = 1 and rank(L) =
N − 1.

Using the incidence matrix B, we can rewrite system (1) in compact
form as

θ̇(t) = ω − K D
−1
c B Da f [BT

θ(t)], (4)

where Dc := diag {c1, . . . , cN}2, and Da is an E × E diagonal
matrix, whose diagonal entries are all the weights aij , indexed from
1 to E; the symbol f(x) has to be intended as the vector whose
k-th component is f(xk). We say that the overall population of os-
cillators synchronizes if all sensors end up oscillating with the same

1The coverage radius is assumed to be the same for all sensors, even
though this could be changed to accommodate for different network topo-
logical models, like small worlds or scale-free networks.

2We assume ci �= 0, ∀i.

pulsation, i.e. θ̇i(t) = θ̇∗(t), ∀i, after a proper transient. Multi-
plying (4) by the row vector c

T := 1
T
NDc from the left side, we

obtain

c
T
θ̇(t) = c

T
ω − K 1

T
NBDaf [BT

θ] = c
T
ω, (5)

where, in the second row of (5), we have used (3). Hence, if the
system is capable to synchronize, in the sense defined before, then
the common pulsation must be equal to

θ̇∗(t) = ω∗ =
c

T
ω

1
T
Nc

=

�N
i=1 ci ωi�N

i=1 ci

. (6)

In a companion paper [12], we showed that there exist two critical
values of K, namely KL and KU , such that for K > KU the net-
work converges to the unique equilibrium point (6), which is proved
to be globally asymptotically stable, and for K < KL, the network
does not converge. It is difficult to provide the exact value of KU ,
but we showed that an upper bound is

KU ≤
2‖Dc∆ω‖

fmaxλ2(La)
, (7)

where λ2(La) is the second-smallest eigenvalue3 of the weighted
Laplacian La := BD

2
aB

T , ∆ω is the vector whose i-th entry is
ωi − ω∗ and fmax = limx→∞f(x). Let us consider now some
applications of this self-synchronization model.

3. DECENTRALIZED DETECTION

We denote with ri[n] the signal observed by sensor i, at time n. The
detection problem can be cast as a binary hypothesis test, where the
two hypotheses are

H0 : ri[n] = vi[n]

H1 : ri[n] = si[n] + vi[n], (8)

with i = 1, . . . , N and n = 1, . . . , L, where si[n] is the useful
signal and vi[n] is the additive noise, modeled as a set of Gaussian
random variables with zero mean and variance σ2

i (the subscript i
indicates the sensor and the index n is the time index). We consider
two typical detection scenarios to show how to design the coupling
mechanism in order to make the network converge to the optimal
detector.

3.1. Deterministic signal

In this case, we consider only one snapshot, i.e. L = 1. The useful
signal si[1] = si is deterministic and assumed to be known to the
i-th sensor. This model is relevant, for example, in all applications
where the network is aimed at detecting specific, a-priori known,
spatial patterns described by the set of values si, with i = 1, . . . , N .
The optimal detector for this observation model consists in compar-
ing the log-likelihood ratio with a threshold log(γ) and the decision
rule is [11]:

T (r) :=
N�

i=1

ri si

σ2
i

−
N�

i=1

s2
i

2σ2
i

H1

≷
H0

log(γ), (9)

where, following the Neyman-Pearson criterion, the threshold γ is
chosen in order to maximize the detection probability, for a given

3The smallest eigenvalue of La is zero by construction.
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false alarm probability. In a conventional sensor network, the for-
mation of this sufficient statistic requires all nodes to transmit their
observations ri, noise variances σ2

i and the structure of the useful
signals si to a sink node. Conversely, in our network, if we set

ωi =
ri si − s2

i /2

σ2
i

and ci = 1 (10)

and take K greater than the bound (7), by virtue of (6), each node
converges to T (r). This requires only local coupling among nearby
nodes, provided that the network connectivity is guaranteed. To get
the estimate (9), it is only necessary to wait for the time necessary
to the network to converge. This time is inversely proportional to
Kλ2(La). Waiting for a time T sufficiently large, from (6) and (10)
each oscillator ends up with a value θ̇∗(T ) = T (r)/N . Hence, it
is sufficient for each sensor to compare its own θ̇∗(T ) with a thres-
hold log(γ)/N . What is important to emphasize is that this optimal
detector is obtained without requiring any node to know all coeffi-
cients si, ri, and σ2

i , for i = 1, . . . , N ; each node is only required
to exchange its evolving state with the nearby nodes.

The previous approach can be also generalized to the case where
the network has to recognize one out of, let us say M , spatial pat-
terns encoded through the sets Sm := {s

(m)
i }, m = 1, . . . , M . In

such a case, we have a multiple hypothesis testing which can be im-
plemented in a decentralized fashion, by letting the previous mecha-
nism run for M times, each time using the initialization

ω
(m)
i =

r
(m)
i s

(m)
i − s

(m)2

i /2

σ2
i

and ci = 1. (11)

At the end of the procedure, each sensor ends up with a set of values
θ̇∗

(m)(T ) and it decides for the pattern that gives rise to the largest

value of θ̇∗(m)(T ).

3.2. Random signal

In many applications, the useful signal is not known a priori, but it
can be reasonably modeled as a random process. We consider now
the case where the random variables describing both useful signals
and noise are spatially uncorrelated. Assuming, in particular, that
both useful signal and noise are modeled as independent Gaussian
random processes, and that the signal variance σ2

si at each node is
a priori known, the optimal detector is the weighted energy detector
for which the decision rule is [11]

T (r) :=

N�

i=1

σ2
sir

2
i

σ2
i (σ2

si + σ2
i )

H1

≷
H0

γ′, (12)

where γ′ is the threshold that provides the desired false alarm rate.
Proceeding as before, this detector can be implemented in a decen-
tralized manner, by initializing each sensor with the values

ωi =
σ2

sir
2
i

σ2
i (σ2

si + σ2
i )

and ci = 1 (13)

and comparing the equilibrium value θ̇∗(T ) with a threshold γ′/N .

In the case where the variances σ2
si are not a priori known, we need

to use the Generalized Likelihood Ratio Test (GRLT) [11], in which
case, the decision rule consists in comparing the following statistic

T (r) :=
N�

i=1

�
1

L

L�
k=1

r2
i [k]

�
1

σ2
i

−
1

P̂i + σ2
i

�
− log

�
P̂i + σ2

i

σ2
i

��

(14)

with a suitable threshold. In (14), P̂i denotes the ML estimate of the
useful signal power, under hypothesis H1, obtained as

P̂i =

�
1

L

L�
k=1

r2
i [k] − σ2

i

�+

. (15)

4. DECENTRALIZED LOCALIZATION

Let us consider now a planar network composed of nodes uniformly
distributed over a square centered on the origin of the plane and
let us assume that each node knows its own coordinates, let us say
(xi, yi). We assume that when the event of interest occurs, it ge-
nerates a power that radiates isotropically from the point where the
event originated, and it attenuates with a power law. More specifi-
cally, denoting with (xc, yc) the coordinates of the target event, we
assume that the power impinging on the i-th sensor depends on the
distance as

Pi =
P0

1 + [(xi − xc)2 + (yi − yc)2]η/2/λ2
(16)

where η is the path loss exponent and λ is a parameter that quan-
tifies the power spreading. Within this setup, we wish to estimate
the coordinates of the event of interest. Assuming a large density
of sensors, a meaningful candidate is the estimator of the center of
gravity of the powers received from all the sensors. We show now
how to achieve this estimate in a decentralized manner, through a
proper choice of the oscillators coefficients. The proposed strategy
consists in the following steps: i) each node estimates the received
power Pi = P (xi, yi) and sets ωi = xi and ci = Pi; ii) the net-
work is let to evolve until an equilibrium is reached. Let us call T
the duration of the evolution. From (6), if T is sufficiently large, the
final value of θ̇∗(t) is then

x̂c := θ̇∗(T ) =

�N
i=1 xiPi�N

i=1 Pi

. (17)

Similarly, initializing each node with the values ωi = yi and ci =
Pi, the final equilibrium will be

ŷc := θ̇∗(T ) =

�N
i=1 yiPi�N
i=1 Pi

. (18)

Equations (17) and (18) show that each node is able to achieve, in
principle, an estimate of the center of gravity of the event, without
the need of sending its measurements to a sink node. In some cases,
where some Pi are null (or very small), we cannot use ci = 0 in (1).
This problem can be circumvented by letting the network to evolve
twice to get each estimate: once with ωi = xiPi and ci = 1 to get
the numerator of (17) and then with ωi = Pi and ci = 1 to get the
denominator of (17).

In general, the power Pi is only estimated within some error due
to both additive noise and finite size samples. We have derived a
small perturbation analysis of the estimator in the presence of esti-
mation errors, modeled as additive Gaussian random variables with
variance σ2

v , and the result is that, at a first order approximation (i.e.,
for small errors), the estimation is unbiased and the estimation vari-
ance is approximately

σ2
xc

≈
σ2

v��N
i=1 Pi

�2

�
	
 N�

i=1

x2
i +

N��N
i=1 Pi

�2

�
N�

i=1

xiPi

���
 .

(19)
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5. RESULTS

As an example of decentralized detection, in Fig. 1 we report the de-
tection probability as a function of the peak SNR, defined as SNR :=
P0/σ2

n, where σ2
n is the noise variance, assumed to be same for all

sensors, for a Pfa = 10−3, for different numbers of sensors. The
path loss exponent is η = 1 and λ = 100.5. We can clearly see how
the performance improves as N increases.
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Fig. 1. Detection probability vs. peak SNR, for different number of
sensors N .

As an example of localization, in Fig. 2 we report the variance of the
decentralized center of gravity estimator, as a function of the average
SNR, defined as SNR :=

�N
i=1 P 2

i /Nσ2
v , for different values of η

and λ. The figure shows both simulations and the theoretical deriva-
tions given by (19). We can verify that, at high SNR, the theoretical
expressions allow us to predict the simulation results very well.
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Fig. 2. Estimation variance vs. SNR, for different values of η and λ.

6. CONCLUSION

In summary, we have shown that if the whole sensor network ob-
serves one event, designing the network nodes as mutually coupled
estimators with a proper coupling mechanism, it is possible to achieve
optimal decentralized detection and localization with the only nec-
essary assumption that the network is connected and the coupling
strength is sufficiently large. The phenomenon considered in this
paper is stationary, but the generalization to a slowly changing envi-
ronment can be made provided that the evolution of the the observed
phenomenon is slower than the network adaptation time, which is
roughly inversely proportional to the product Kλ2(L). Interest-
ingly, this time constant depends on the network topology through
the coefficient λ2(L), which means that different topologies give
rise to different adaptation capabilities.
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