
CENTRALIZED AND DISTRIBUTED SOURCE LOCALIZATION
BY A NETWORK OF SENSORS USING GUARANTEED SET ESTIMATION

Michel Kieffer and Éric Walter
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ABSTRACT

This paper is about source localization in a network of sen-
sors from readings of signal strength. Contrary to previously
published results, the source signal strength and path loss ex-
ponent are not assumed known a priori. The measurement
errors are assumed bounded, with known bounds. The prob-
lem is then solved both in a centralized and in a distributed
context using bounded-error parameter estimation techniques
and interval analysis. Simulation results with realistic mea-
surements are provided.

1. INTRODUCTION

The problem of localizing a source that emits an acoustic or
electromagnetic wave using a set of distributed sensors has
received a growing interest in recent years, see, e.g., [1, 2].
The localization technique used depends on the type of infor-
mation available to the sensor nodes. Time of arrival (TOA),
time difference of arrival (TDOA) and angle of arrival (AOA)
usually provide the best results [3], however, these quantities
are most difficult to obtain, as they require, a good synchro-
nization between timers (for TOA), exchanges between sen-
sors (for TDOA) or multiple antennas (for AOA). Contrary to
TOA, TDOA or AOA data, readings of signal strength (RSS)
at a given sensor are easily obtained, as they only require
low-cost sensors or are already available, as in IEEE 802.11
wireless networks, where these data are provided by the MAC
layer [2].

This paper focuses on source localization from RSS data.
Centralized approaches have been proposed to solve this prob-
lem for acoustic sources [4] and for sources emitting elec-
tromagnetic waves, see, e.g., [5–7]. In the first case, some
knowledge of the decay rate of the RSS (path loss exponent)
is needed for efficient nonlinear least squares estimation. In
the second case, an off-line training phase is required to allow
maximum a posteriori localization. In both cases, a good ini-
tial guess of the location of the source facilitates convergence
to the global minimum of the cost function. Distributed ap-
proaches have also been employed, e.g., in [8], where a dis-
tributed version of nonlinear least squares has been presented.
When badly initialized, it suffers from the same convergence
problems as the centralized approach, as illustrated in [9],
which advocates projection on convex sets. However, this re-
quires an accurate knowledge of the source signal strength
and of the path loss exponent.

The new approach presented in this paper does not need
such a knowledge. A model of the RSS data will be used
to achieve localization without prior training. All measure-
ment errors will be assumed bounded, with known bounds.
Under this assumption, localization translates into the char-
acterization of the set of all parameters of the source that are
consistent with the measurements, error bounds and measure-
ment model. Various techniques are available to characterize
this set in an approximate, but guaranteed way. Here, set in-
version and interval constraint propagation (ICP) [10] will be
put at work, respectively in a centralized and in a distributed
context. This paper extends results presented in [11], where a
less realistic RSS model is used.

Section 2 presents localization in a bounded-error con-
text. Required notions on interval analysis are recalled in Sec-
tion 3. Section 4 is dedicated to centralized localization while
Section 5 focuses on distributed localization. The techniques
proposed are compared in Section 6 in realistic simulations.

2. BOUNDED-ERROR SOURCE LOCALIZATION

Consider a network of L sensors, located on a plane in a lim-
ited region of space. The location of the �-th sensor is as-
sumed perfectly known and denoted by r� ∈ R

2, � = 1 . . . L.
A source has to be localized in this sensor network from RSS
data at the sensors. The source is characterized by its un-
known location θ and emitted power P0 (in dBm) at a short
reference distance d0.

The mean power P (d) (in dBm) received by the �-th sen-
sor is described the Okumura-Hata model [12]

P dB (d) = P0 − 10np log
d

d0
, (1)

where np is the path-loss exponent and d = |r� − θ|. Ex-
cept in open fields, np depends on the relative position of
the source and sensor. Here, np is assumed constant for all
sensors of the field. Usually, the variance σ2

p of the received
power is modeled as log-normal, i.e., normal in dB [6]. Here,
the measurement noise is assumed to remain within some
known bounds, i.e., the RSS satisfies

PdB (d) ∈

[
P0 − 10np log

d

d0
− e, P0 − 10np log

d

d0
+ e

]
(2)
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where e is known. Using this model, it is possible to write the
RSS by sensor � as y� = ym (θ, A, np, �)w�, � = 1 . . . L, with

ym (θ, A, np, �) =
A

|r� − θ|np
, A = 10P0/10d

np

0 , (3)

and w� ∈ [w] =
[
10−e/10, 10e/10

]
. The parameter vector

to be estimated is thus p = (θT, A, np)
T and ym (θ, A, np, �)

will be written as ym (p, �).
The aim of this paper is to characterize the set P ⊂ [p]0

of all parameter vectors that are consistent with the measure-
ments, the RSS model (3), and the noise bounds. The initial
search box [p]0 is assumed to contain the actual parameter
value p∗. P may then be defined as follows

P = {p ∈ [p]0 | ym (p, �) ∈ [y�] , � = 1 . . . L} ,

where [y�] = y�/ [w] is assumed to contain the actual noise-
free RSS by sensor �.

Characterizing P is a classical set-inversion problem that
may be solved using interval analysis [10, 13], presented in
Section 3. When centralized localization is considered, the
computing capacity is not a problem and one may want to de-
scribe P as accurately as possible, see Section 4. With distrib-
uted localization, computing capacity becomes critical, and
interval constraint propagation will be used, see Section 5.

3. INTERVAL ANALYSIS

Interval analysis provides a set of tools to compute with in-
tervals [x] = [x, x] ⊂ R and vector of intervals (or boxes)
[x] = [x,x] ⊂ R

n. For any function f : D ⊂ R −→ R

defined as a combination of arithmetical operators and ele-
mentary functions, interval analysis makes it possible to build
inclusion functions [f ] satisfying

∀ [x] ⊂ D, f ([x]) ⊂ [f ] ([x]) , (4)

where [f ] ([x]) is an interval. For example, the natural inclu-
sion function is obtained by replacing all occurrences of a real
variable by its interval counterpart. It thus becomes possible
to enclose the set of all values taken by a function over a given
interval into a computable image interval. For more details,
see [10, 13].

4. CENTRALIZED LOCALIZATION

In this case, all measurements provided by the L sensors are
transmitted to a central processing unit. Let

ym (p) = (ym (p, 1) , . . . , ym (p, L))
T (5)

be the RSS model for the L sensors and

[y] = ([y1] , . . . , [yL])T

denote the box formed by all RSS data with their uncertainty
interval.

The SIVIA algorithm [14] provides a union P of non-
overlapping boxes (subpaving) guaranteed to contain P. The
boxes of P are obtained from successive bisections and selec-
tions starting from [p]0. The only requirement is the avail-
ability of an inclusion function for (5) . The bisections and
selections are performed as follows. SIVIA recursively ap-
plies the next three tests, starting from [p]0:
– If [ym] ([p]) ⊂ [y] , then according to (4) , for all p ∈ [p] ,
ym (p) ∈ [y]. Any p ∈ [p] is thus consistent with the mea-
surements, model structure, and noise bounds. Thus [p] is
proved to be included in P and is stored in P.
– If [ym] ([p]) ∩ [y] = ∅, then, again according to (4) , for all
p ∈ [p] , ym (p) /∈ [y] . Therefore, there is no p in [p] that is
consistent with the measurements, model structure and noise
bounds and [p] can be discarded.
– In all other cases, if the width w ([p]) of [p] is larger than
some specified precision parameter ε, it is bisected to get two
subboxes on which the same tests are applied. If w ([p]) < ε,
[p] is stored in P.

The parameter ε is used to tune the trade-off between
complexity and accuracy of description of P by P. For more
details about convergence and complexity issues, see [14]. It
is possible to build from SIVIA an algorithm that is robust to
outliers, i.e., data for which (2) does not hold, see [10].

5. DISTRIBUTED LOCALIZATION

Implementing SIVIA on each node would be too complex for
sensors with low computing capabilities. Moreover, transmit-
ting subpavings would require too much wireless resource.
On the other hand, evaluating a box containing P in a distrib-
uted fashion is still possible using ICP [15, 16].

The main idea is as follows. Assume that sensor � has ob-
tained an estimate [p] for P from one of its neighbors. Using
its RSS, this sensor may be able to evaluate a new box [p′]
such that P ⊂ [p′] ⊂ [p]. This is performed by discarding
from [p] parts that are not consistent with [y�] using ICP. Sen-
sor � then transmits the updated estimate [p′] to its neighbors.
More sophisticated strategies for exchanging information be-
tween sensors may be considered [17].

5.1. Interval constraint propagation

A constraint satisfaction problem consists of a set of vari-
ables {x1, x2 . . . xM} associated to domains, here intervals,
{[x1] , [x2] . . . [xM ]} to which these variables have to belong.
The variables are linked by a vector constraint

f (x1, x2 . . . xM ) = 0. (6)

The purpose of ICP is to contract ([x1] . . . [xM ]) , i.e., find
a smaller domain ([x′

1] . . . [x
′

M ]) ⊂ ([x1] . . . [xM ]) still con-
taining all {x1, x2 . . . xM} such that (6) is satisfied. Many
techniques have been proposed to solve this problem, see,
e.g., [15, 16]. Due to lack of space, the basic idea of ICP
will be presented on a very simple example.

Consider three variables x, y, and z, their domains [x] =
[−10, 1], [y] = [−1, 8], and [z] = [1, 20] and a constraint
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x + y = z. This constraint implies that z ∈ [x] + [y] =
[−11, 9]. Thus, z ∈ [z′] = [−11, 9] ∩ [1, 20] = [1, 9]. Now
the constraint implies that x ∈ [z′] − [y] = [−7, 10], thus
x ∈ [x′] = [−7, 10] ∩ [−10, 1] = [−7, 1]. Similarly, y ∈
[y′] = [0, 8].

When the reduced domain turns out to be empty, one has
proved that (6) admits no solution in the given domains. In
[18], an algorithm is presented that provides the most effi-
cient contraction for variables belonging to intervals and con-
straints that may be described by a tree, i.e., allowing each
variable to be written as a function of the others.

5.2. Application to distributed localization

Here, contrary to classical constraint satisfaction problems,
the variables and constraints are distributed on the sensor net-
work, [19, 20]. However, ICP may still be used at each in-
dividual sensor. At sensor �, the variables are y�, θ, A, and
np, their domains are [y�], measured at the sensor, and [θ],
[A] and [np], obtained from its neighbors. The variables must
satisfy the constraint provided by the RSS model

y� −
A

|r� − θ|np
= 0. (7)

From (7), the contracted domains may be written as

[y′

�] = [y�] ∩
[A]

|r� − [θ]|[np]
,

[A′] = [A] ∩ [y′

�] |r� − [θ]|[np] ,[
n′

p

]
= [np] ∩ (log ([A′]) − log ([y′

�])) / log (|r� − [θ]|) ,[
θ′1

]
= [θ1] ∩

(
r�,1 ±

√
([A′] / [y′

�])
2/[n′

p] − (r�,2 − [θ2])
2

)
,

[
θ′2

]
= [θ2] ∩

(
r�,2 ±

√
([A′] / [y′

�])
2/[n′

p] − (r�,1 − [θ1])
2

)
.

In the last two update equations, the set intersecting [θ1] and
[θ2] may consist of two disconnected intervals. In this case,
the smallest interval containing the result is evaluated.

Using [18], it can be shown that the contraction is opti-
mal with respect to the information available at the �-th sen-
sor. However, when considering all constraints simultane-
ously, the optimality conditions no longer hold. Cycling through
the sensor network, as in [8,9] improves the estimation. More
details about the optimization of sensor communications may
be found in [19].

6. EXAMPLE

Consider networks of L = 5000 sensors randomly distributed
over a field of 100 m×100 m. A source has been placed at
θ
∗ = (50 m, 50 m)

T
, such that P0 = 20 dBm, d0 = 1 m

and np = 2 (np is assumed constant over the field). The mea-
surement noise is such that e = 4 dBm. This corresponds to
A = 100.

For 100 realizations of the sensor field, data have been
simulated with (2). To limit computational load, only sen-
sors such that y� > 10 participate to localization. The initial
search box for p is taken as [0, 100] × [0, 100] × [50, 200] ×
[2, 4] in a first scenario, where A (or P0) is assumed unknown.
In a second scenario, A is assumed perfectly known. For the
distributed approach, five cycles in the sensor network are
performed.

The two proposed techniques are compared to localization
by a closest point approach (CPA), which searches for the in-
dex of the sensor with the largest RSS �CPA = argmax� y�

and uses the location of this sensor θ̂CPA = r�CPA as an es-
timate for θ

∗. This technique, albeit it is not the most effi-
cient [4], performs well for dense sensor networks, as here.
Point estimates for θ

∗ are evaluated as θ̂C = mid
([

proj
θ
P
])

,
the midpoint of the smallest box containing the projection of
P onto the θ-plane in the centralized approach and as the cen-
ter of the projection onto the θ-plane of the solution box [p],
θ̂D = mid(proj

θ
[p]), in the distributed approach.
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Fig. 1. Histograms of the localization error for 100 realiza-
tions of the sensor network

Figure 1 presents the histogram of the L2 norm of the dif-
ference between θ

∗ and its estimates provided by the three
techniques previously described. The mean and standard de-
viation of this quantity is also provided in Table 1. The cen-
tralized approach performs better than the distributed one, but
the distributed approach provides a reasonable estimate at a
much lower computation and transmission cost. Both tech-
niques outperforms CPA, the performances of which do not
depend on whether A is known.

Figure 2 describes the projection onto the θ-plane of the
solution sets provided by the centralized and distributed tech-
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Table 1. Mean value m and standard deviation σ of the es-
timation error for 100 realizations of the sensor network; all
quantities are in meters

known P0 unknown P0

m σ m σ
CPA 0.66 0.41 0.66 0.41

Distributed 0.16 0.12 0.34 0.21
Centralized 0.14 0.10 0.25 0.21

niques for a given set of measurements. A more precise outer
approximation of P is obtained with centralized localization,
but this is achieved at a higher computational cost.

P A
0

or knownP A
0

or unknown

Fig. 2. Zoom on two typical solution sets obtained with cen-
tralized localization. The boxes in bold are obtained by the
distributed approach

7. CONCLUSIONS AND PERSPECTIVES

Bounded-error techniques using interval analysis have been
employed on centralized and distributed source localization
in a sensor network. No initial training is required, and the
source strength and path loss exponentmay be unknown. More-
over, no initial guess of the source location has to be provided.
This approach may easily be implemented in a distributed
context, as interval computations are only two to four times
more complex than floating-point computations.

Deterministic global optimization using interval analysis
[10, 13] could also be used in a centralized version of the lo-
calization. The results provided by such an approach could
serve as a benchmark for other localization techniques. Fur-
ther research directions include multiple source localization,
an extension to source tracking, for which bounded-error state
estimation may be put at work [10], robust localization in
presence of outliers, and localization with sensors having an
imprecise knowledge of their location.
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