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ABSTRACT

We provide a game theoretic formulation for a sensor activation

problem in a multi-attribute environment. Activated sensors ran-

domly select one of M environmental attributes, and transmit data

on that attribute to an end user. The goal is to maximize the number

of attributes reported while minimizing redundant reports and packet

collisions, which both increase with the number of active sensors.

Sensor participation is optimized according to an adaptive scheme,

in which sensors activate only when their expected utility, given by

the number of unique attributes reported minus an energy cost, is

positive. We formulate a Nash equilibrium policy that maximizes

the expected performance from the perspective of each sensor when

transmission is according to a one-shot frequency hopping scheme,

and compare this to the global optimum.

1. INTRODUCTION

Due to the advent of inexpensive, low-power electronics and in-

creased computing power, sensor networks are becoming increas-

ingly attractive for large-scale environmental monitoring. The key

idea is that large numbers of spatially distributed sensors are ideally

suited for monitoring spatially distributed processes. The problem of

coordinating large groups of sensors to efficiently gather and report

environmental data is an active area of research.

In order to avoid the cost and complexity of coordinating large

sensor networks, decision making tasks are shifted from the end user

to the sensors themselves. The problems of optimal activation in this

case become sensor-centric, which leads naturally to the use of game

theory as an analytical tool. We present here a game-theoretic sensor

activation scenario, using recent contributions from the economics

community to derive a scheme for reporting on a multi-attribute en-

vironment over a wireless communication medium.

The sensor activation problem is described as follows. A large

array of sensors is deployed on the ground to track a distributed pro-

cess of interest. For example, the process could be due to animal

or human activity, seismic events, etc. Each sensor can detect and

report on one component of the process, but does not know whether

its counterparts are also reporting on components, and, if they are,

whether or not some sensor has selected the same component as it-

self. If too few sensors provide reports, then insufficient data will

be provided to the end user. On the other hand, if too many sensors

provide reports, then inefficiency arises for two reasons: 1.) many

sensors will report redundant attributes, and 2.) transmission energy

will be wasted due to increased packet collisions. We characterize
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a Nash equilibrium strategy that yields optimal performance from

each sensor’s perspective, and compare this to the globally optimal

strategy.

Although this paper focuses on analytical results, this is moti-

vated by the assumption of a decentralized adaptive scheme leading

to the execution of a Nash equilibrium [1]. In the adaptive scheme,

sensors periodically receive feedback as to the state of the network

(the number of unique attributes reported or the number of sensors

on). This feedback is used to to calculate the expected reward and

transmission cost. Sensors then learn to activate only if their ex-

pected utility, which is computed through strategic reasoning, is pos-

itive. Since sensors have limited battery power, decentralized adap-

tation and decision rules are superior to centralized control, due to

the communication energy required to facilitate the latter.

Game theory has been used in many aspects of sensor networks,

including transmission power control [2], [3], medium access control

[4], and packet routing [5]. Other potential uses for game theory

include network connectivity and data fusion. A good overview of

game-theoretic models in sensor networks is given in [6] and [7].

This paper is most closely related to the literature on medium access

control, but also incorporates an element of data fusion.

The game theoretic approach here resembles the El Farol Bar

problem [8] and the related field of minority games. Such games

have been studied in the context of sensor networks in [9], but us-

ing a different approach. We focus on the generalization developed

in [10], which describes a game in which each player must choose

either to go to a bar or stay home. The (common) utility of players

is based on a global signal plus a function of how crowded the bar

is. The model can be extended by the use of noisy global signals,

which is characteristic of global games [11]. However, this analy-

sis is omitted in this preliminary paper. In this paper, “going to the

bar” is identified with sensor participation, and the global signal is

identified with energy costs.

2. THE MULTI-ATTRIBUTE SENSOR ACTIVATION GAME

We consider a network of N sensors, deployed to monitor an envi-

ronment with M attributes. At given time periods, each sensor must

decide whether or not to participate in monitoring or enter a “sleep”

mode. If the sensor participates, it receives some reward depending

on a participation cost θ and the proportion

α = n/N (1)

of sensors participating in a play of the game (n is the absolute num-

ber of participating sensor). Participating sensors randomly select

one of the M environmental attributes with equal probability, and
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report the details of that attribute to an end user over a communica-

tion network (of which more will be said below). Non-participating

sensors receive zero reward.

Sensors have no control over which attribute is selected. This is

characteristic of unattended ground sensor networks that observe a

mobile population, since stationary sensors cannot determine which

members of the population they observe.

For participating sensors, the expected reward is

U(θ, α) = θ + f(α). (2)

In this paper, f(α) is taken as the expected proportion (relative to

M ) of unique attributes reported to the base station when propor-

tion α of the sensors participate. θ is assumed to be negative. It is

interpreted as the cost of participating, of using energy and hence

forgoing future opportunities.

Define h(α) to be the expected proportion of unique attributes

reported when proportion α reports are received, and define g(α)
to be the expected proportion of successful transmissions given α
attempts. Then f(α) obeys the relation

f(α) = h(g(α)). (3)

Each round of the sensor activation game is summarized in the

following algorithm.

Algorithm 2.1 1. Each sensor observes a common cost θ, pos-
sibly through a global feature of the environment or an inter-
nal state of the sensor.

2. Each sensor also estimates αn based on the state of neigh-
bouring sensors or channel feedback.

3. Based on (θ, αn), each sensor predicts αn+1 and activates
at time n + 1 if doing so maximizes its expected reward.

4. Participating sensors measure one of M environmental at-
tributes, selected at random with equal probability.

5. Reports are transmitted to an end user over one of q shared
communication channels. If multiple sensors transmit on a
given channel, the transmissions fail, and no retransmission
is attempted.

2.1. Attribute Detection and Overlap

We first derive h(α). When α is small, the probability of duplicate

attribute detection is small, and h is roughly linear. However, when

α becomes large, the probability that sensors duplicate each others’

efforts increases, and h grows more slowly. h(α) is given as follows.

Lemma 2.1 Define the ratio of sensors to attributes by

r = N/M. (4)

Then
h(α) ≈ 1 − e−rα. (5)

All proofs are provided in the appendix.

This is an asymptotic result, for large numbers of sensors and

attributes. However, it is a good approximation even for smaller

numbers. The proof of Lemma 2.1 yields exact values for any given

problem size.

2.2. Attribute Reporting and Collisions

Crowded situations lead to packet collisions as well as report du-

plications. In this section we derive the relation for g(α), under a

one-shot frequency hopping transmission scheme, as described in

[4]. In this model, n sensors select one of q available channels for

transmission. If a single sensor selects a channel, then it transmits

successfully. If m > 1 sensors select the same channel, none are

successful. Since sensors are given limited battery power for trans-

mission, we build energy awareness into our model through the re-

quirement that packet collisions do not result in retransmission. The

model leads to the following result.

Lemma 2.2 Define the ratio of sensors to channels by

γ = N/q. (6)

Then, for the one-shot q−frequency hopping model,

g(α) = αe−γα. (7)

3. ANALYSIS OF THE GAME

Since sensors are self-interested and do not coordinate explicitly, we

seek a Nash equilibrium solution. We have so far established from

(3), (5), and (7) that the proportion of unique reports satisfies

f(α) = 1 − e−rαe−γα

. (8)

In [10], we find an analysis of this game for general f(α), as follows:

Assume a participation game with payoff given by (2), where f
is quasi-concave, f(0) = 0, and f ′(0) > 0. Then

• For θ < −maxα f(α), the unique Nash equilibrium (domi-

nant strategy) is for no sensor to participate.

• For θ > −min(0, f(1)), the unique Nash equilibrium (dom-

inant strategy) is for all sensors to participate.

• For intermediate θ, there is a single stable mixed strategy

equilibrium, where a given proportion of sensors participate,

as well as a pure equilibrium where no sensor participates.

A quick check confirms that the multi-attribute sensor activation

game satisfies the required conditions on U. First,

f ′(α) = (1 − γα)re−α(γ+re−γα). (9)

It is now easy to show that f(0) = 0, f ′(0) = r, and f is quasi-

concave with its maximum at

(α, f) =
“
1/γ, 1 − e

− r
eγ

”
. (10)

We consider only the case where γ > 1. Here f(α) is decreas-

ing for α beyond 1/γ. That is, there is a congestion effect in the

game such that the activation of too many sensors decreases system

performance; in the region α < 1/γ, the game is supermodular, oth-

erwise it is submodular. [10] identifies both weak congestion and

strong congestion, depending on whether f(1) ≥ 0 or f(1) < 0,
respectively. Since 0 < e−x < 1 for all x > 0, only weak conges-

tion is possible in our case. Nash equilibria for the weak congestion

case are analyzed in [10], and we now summarize those results for

the case where θ is perfectly observed by each sensor. The equilib-

rium outlined below are in addition to the dominant strategy (pure)

equilibria mentioned above for extreme values of θ.
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3.1. Random Reporting under Perfect Observations

When each sensor perfectly observes the cost θ, and this value is

between the extremes −maxα f(α) and −min(0, f(1)), that is for

θ ∈
“
e
− r

eγ − 1, 0
”

, (11)

two stable Nash equilibria exist. First, it is a Nash equilibrium for

no sensor to participate, since the participation reward for small ε is

U(θ, ε) ≈ θ < 0. Second, it is shown in [10] that it is a unique stable

mixed strategy Nash equilibrium for proportion y(θ) of the sensors

to participate, where y(θ) is the unique solution to (U(θ, y(θ)) =
0, y(θ) ≥ 1/γ). That is,

„
y(θ)e−γy(θ) =

−1

r
log(θ + 1), y(θ) ≥ 1

γ

«
. (12)

Since the null-action Nash equilibrium is clearly worse overall

than the mixed equilibrium, we retain only the latter. At this point

it is worthwhile to note that the globally optimal strategy (the mixed

strategy giving maximal expected global utility) is for proportion

y(θ) ≡ 1/γ to participate whenever θ is in the interval given by (11).

However, such schemes are unstable in a game theoretic framework

since any individual sensor would gain by deviating to a strategy in

which it participated with probability one. Such freeriding behaviour

is eliminated by restricting our attention to Nash solutions.

The Nash equilibrium would be satisfied if a fixed proportion

y(θ) of the sensors turned on and remained on. However, this is

undesirable from a load-sharing perspective. Therefore, we consider

randomized policies in which the expected number of “on” sensors

is y(θ). Under the simplest such policy, when each player activates

with probability y(θ), it can be shown numerically that the expected

value of f(y(θ)) ≈ θ for large N. Thus, the policy is nearly Nash.

4. NUMERICAL ANALYSIS

In this section we contrast Nash equilibrium and globally optimal

decision rules, and provide a numerical simulation.

4.1. Equilibrium vs. Optimal Decision Rules

For θ given by (11), the globally optimal proportion of 1/γ is always

less than the Nash equilibrium proportion given by (12). The two de-

cision rules are plotted in Figure 1 for θ = −0.01. As θ decreases,

the region of inactivity (the flat triangular section in Figure 1) be-

comes smaller, as it costs more to participate. Also, the equilibrium

participation probability increases with r, even though the optimal

policy does not. Finally, when γ is small, the unique equilibrium is

100% participation, whereas the optimal policy is not.

4.2. Numerical Example

We show a simulation for N = 1000 sensors, M = 500 attributes,

and q = 100 channels. The simulation results are shown in Fig-

ure 2, which shows the payoff curve U(α,−0.0355), along with the

equilibrium operating point, and the proportion of active sensors op-

erating according to Algorithm 2.1. Sensors predict α as the average

of past values, and increase their participation probability sharply as

the predicted payoff becomes positive. This random behaviour bal-

ances the load; sensors are active roughly the same amount of time.

The participation probability is given as a logistic function:

Pr(“on”|α) = 1 − 1/(1 + e−k(α−y(θ))). (13)

Parameter k must be tuned. Larger values of k results in the mean

number of sensors staying close to y(θ), with very little noise. How-

ever, convergence time also increases with k, as does the variance in

the proportion of time each sensor is “on”. Setting k = 1000 in this

example resulted in a good trade-off of these considerations.

5. SUMMARY

We have presented a participation-based sensor activation game, in

which sensors determine individually optimal strategies for maxi-

mizing reporting efficiency in a multi-attribute environment. The

game admits a mixed-strategy Nash equilibrium that is close but in-

ferior to the globally optimal policy. Future work will consider cor-

related attributes, a more sophisticated CDMA transmission model,

and a more general formulation for U, so that θ may be used as an es-

timation parameter such as θ = r/γ. A sensitivity analysis will also

be performed. In addition, the global game situation, in which each

sensor receives only a noisy estimate of (r, γ, θ) will be considered.

6. APPENDIX

6.1. Proof of Lemma 2.1

Consider n sensors making independent observations of M possible

attributes. Assume the observations are made in sequence and con-

sider the kth sensor. Given i different attributes have been observed

so far, k’s probability of observing a new attribute is M−i
M

.
We formulate a Markov chain indexed over sensors, with state

Xk representing the proportion of attributes observed by the first k
sensors. Define the state space:

S =

j
0,

1

M
,

2

M
, . . . ,

M − 1

M
, 1

ff
, (14)

where state i ∈ S corresponds to the proportion i of attributes sensed.

The transition probabilities are:

pi(i+1) = 1 − i, pii = i (15)

The chain is a pure birth process, with unique absorbing class {1}.
Define P to be the transition matrix for the Markov chain with

rows and columns corresponding to absorbing states deleted, and let

C = (I − P )−1. (16)

Then according to [12], the ijth entry of C, cij , denotes the expected

number of steps spent in state j, given that the chain starts in state i.
Given C, the expected number of sensors S needed to sample a

given number J of the M attributes is

S(J) =

J−1X
k=0

c0k. (17)

It can easily be verified that C is given by

C = (I − P )−1 =

2
6664

1 M
M−1

M
M−2

. . . M
M

M−1
M

M−2
. . . M

. . .

M

3
7775 . (18)

Therefore, we have

S(J) =

J−1X
k=0

M

M − k
. (19)
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Fig. 1. Nash equilibrium (upper curve) and globally optimal policies

(lower curve) for nominal network values.

Since S(J) gives the number of sensors needed to observe J
attributes, the function S−1(n), gives the number of attributes ob-

served by n sensors. This gives the solution to our problem.

We now calculate S(J) and S−1(n) for large M. Let the pro-

portion of attributes sampled relative to M be

h(n/M) = J(n/M)/M. (20)

From (19), we have that

S(J + 1) = S(J) + M/(M − J). (21)

For large M, this gives

dS

dJ
≈ 1

1 − J/M
. (22)

Integrating (22), and noting that S(0) = 1, we obtain

S(J) ≈ −M ln(1 − J/M) + 1. (23)

Hence,

S−1(n) ≈ M
“
1 − e

1
M

− n
M

”
. (24)

Noting that n/M = rα, we obtain h(α) ≈ 1 − e−rα.

6.2. Proof of Lemma 2.2

From [4], the expected number of successes per sensor in n trans-

missions is r(n) = n/N(1 − 1/q)n−1. This is rewritten as r(α) =
α(1 − γ/N)Nα−1, which approaches r(α) ≈ αe−γα as N →
∞.
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