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Dept. of Electrical and Computer Engineering,
Stony Brook University, Stony Brook, NY, 11794-2350

ABSTRACT

An important application of sensor networks is target tracking and
localization. To deal with sensor nodes with limited energy supply
and communication bandwidth we propose energy-efficient hierar-
chical architectures for solving the target tracking problem. In these
networks, sensors form clusters and transmit minimal quantized in-
formation about a sensed event to a specialized node, known as a
cluster head. Cluster heads are equipped with capability of com-
municating over large distances with a fusion center or a base sta-
tion. We consider two different hierarchical architectures : (a) the
target dynamics are probabilistically estimated at the cluster heads
and their statistics combined at the fusion center, and (b) the clus-
ter heads perform simple compression rules on the quantized sensor
data and the fusion center estimates the target dynamics using these
severely compressed data. Sequential Monte Carlo algorithms for
estimation of the target dynamics are used. Through computer sim-
ulations the performances of these two architectures are studied.

1. INTRODUCTION

Rapid advances in the manufacturing of tiny low cost and low power
sensor devices are paving the way for pervasive sensing and ubiqui-
tous computing. Being inexpensive and small in size these sensors
are deployed in large number for purposes of monitoring ecosys-
tems, or detecting faults and intrusions in both military and civilian
scenarios. Other growing applications of wireless sensor networks
include automotive telematics, smart bridges, and inventory tracking
and management [1]. The constraints in computation power, battery
power, and communication bandwidth of these sensors have gener-
ated numerous challenges towards the design of energy-efficient sen-
sor networking architectures, protocols and algorithms for increased
accuracy and improved system throughput.

A typical sensor network comprises of a large number of sen-
sors, which perform tasks of sensing, local data processing and trans-
mission of data to a central unit, known as a base station (BS) or a
fusion center (FC). In flat network architectures, where all the sen-
sors transmit the data to the FC either directly or route the data to
the FC through intermediary sensor nodes, a considerable amount
of sensor energy is dissipated in communication. In view of these
drawbacks, hierarchical sensor network (HSN) architectures have
been proposed [2, 3]. At the lowest level (tier 0), sensors form a
cluster and a selected node receives the sensed data transmitted from
the sensors in the cluster. The selected node is known as leader node
(LN) or cluster head (CH). The CHs may form a second level (tier
1) of hierarchy. In a two-tiered hierarchical architecture, communi-
cation proceeds among (a) sensor nodes and CHs and (b) CHs and
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Fig. 1. Hierarchical Sensor Network

FC, thereby adverting the need for direct communication between
sensors and FC. As a result, with CHs relatively closer to the sensors
than the FC, the energy consumption by each sensor for data trans-
mission is considerably reduced. While sensors may have multiple
CHs, here we consider the situation where a sensor has only one CH.

In this paper, we address target tracking in two-tiered hierarchi-
cal sensor networks. The CHs are assumed capable of communicat-
ing directly with the FC [4]. The sensors use a simple quantization
scheme that results in transmission of a ‘1’ when the target is in
their vicinity and a ‘0’ otherwise. We consider the following two
HSN architectures.

• When CHs have medium to high computational resources,
target tracking is performed at the CH using the quantized
data. We term this architecture as HSN-Type I.

• When CHs have low computational resources, the CHs em-
ploy simple compression rules and transmit this compressed
data to the FC. We term this architecture as HSN-Type II. In
this paper, the compression rule accounts for the transmission
of a single number that represents the number of sensors re-
porting the event of interest in their neighborhood.

Fig. 1 shows an example of a HSN. We consider a cluster as ac-
tive, when any of its sensors report events of activity in their neigh-
borhood. Clusters are inactive if there are no sensors that sense any
activity in their neighborhood. In the example, at time instant t1
C1 is an active cluster while CHs C2 and C4 are inactive. At time
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instant t1, when the target is within the vicinity of sensor S1, the
sensor transmits a 1 to the CH C1, which processes the data and
transmits them to the FC. At time instant t2, sensors S2 and S1 of
CHs C1 and C5 respectively, report the presence of the target. In a
HSN-Type I, the CH C1 and C5 independently estimate the target
dynamics and the FC combines these estimates, while in HSN-Type
II, the CHs transmit the number of 1s, that each of them received
from its sensors. We propose sequential Monte Carlo (SMC) algo-
rithms for target tracking and data fusion in HSNs-Type I and Type
II.

The organization of the paper is as follows: in Section 2, the
main components of the sensor network, the sensor, the CHs, and the
FC are defined. In Section 3, a detailed description of SMC methods
for target tracking in these networks is provided and in Section 4,
simulation results are presented. Finally we conclude the paper in
Section 5.

2. SYSTEM OVERVIEW

2.1. Sensor Model

Following the work in [5], we model the strength of the signal emit-
ted by target and received at the sensor as

yn,c,t = min

�
Ψ0,

Ψ0d
α
0

|rn,c − dt|
α � + vn,c,t (1)

where Ψ0 is the signal strength within a known reference distance
d0, rn,c ∈ R

2 is the position of the n-th sensor in the c-th clus-
ter, dt ∈ R

2 denotes the location of the target at time t, | · | de-
notes norm (length) of a vector, α is the attenuation parameter and
vn,c,t ∼ N(µv , σ2

v) is a noise process with Gaussian probability
density function whose statistics are assumed known. In equation
(1), the unknown quantities are Ψ0 and dt. If the observed energy
level yn,c,t, exceeds a threshold γ, the sensor transmits a binary 0,
otherwise it transmits a 1 [6]. Mathematically this processing is
modeled as

sn,c,t = � 1 ⇐ yn,c,t ≥ γ

0 ⇐ yn,c,t < γ.
(2)

2.2. Cluster Head Model

In a HSN-Type I, the active CHs using the binary data, sn,c,t ∈
{1, 0}, from the sensors, estimate the target dynamics and transmit
these statistics to the FC. In a HSN-Type II, the CH transmits the
number of active sensors in its cluster to the FC. The transmitted
signal to the FC is modeled as

zc,t =

Nc�
n=1

sn,c,t (3)

where Nc is the number of sensors in the c-th cluster. The total
number of clusters in the proposed networks is C.

2.3. Fusion Center Model

Reiterating, the role of the FC in HSNs-Type I, is to combine the es-
timates of the CHs when multiple clusters are active and to provide
the initialization parameters of the SMC filter implemented on the
active clusters. In these networks the FC does not require any loca-
tion information of the sensors. In HSNs-Type II, the FC collects the
severely quantized sensor data from the CHs and estimates the target
statistics. In this type of network the FC needs to know the location
of the sensors and the indices of the CHs to which they belong.

3. SMC ALGORITHMS FOR TARGET TRACKING

SMC methods, also known as particle filtering methods, are well
suited for non-linear filtering problems where the posterior distri-
bution of the system state vector xt is approximated by a random
measure which consists of a set of weighted samples [7]. These
samples are also known as particles. At a given time instant, the
particles are propagated using a proposal density and the weights
are recursively updated. In a SMC framework, the target track-
ing problem is formulated as a non-linear filtering problem, with
the target’s dynamic parameters as the system state vector. The
target movement model here plays the role of the state transition
equation. Denoting xt = [ẋ1,t, ẋ2,t, x1,t, x1,t, Ψt]

�, and defining
lt = [x1,t, x2,t, Ψt]

� as the vector containing the position of the
target and the reference signal strength and υt = [ẋ1,t, ẋ2,t]

� as
the velocity vector, we model the state transition equations as

υt = υt−1 + Ft−1ut

lt = G
1
t−1υt−1 + G

2
t−1lt−1 + G

3
t−1υt (4)

where

Ft = � Ts 0
0 Ts � , G

1
t−1 = �� Ts

2
0

0 Ts
2

0 0

�	
G

2
t−1 = �� 1 0 0

0 1 0
0 0 1

�	
, G

3
t−1 = �� Ts

2
0

0 Ts
2

0 0

�	
and ut is a Gaussian noise process with zero mean and covariance
matrix Cu. The observation equation (1), can be rewritten as

yn,c,t = h(x1:2,t, rn,c) + v
c
n,t (5)

where h(x1:2,t, rn,c) = min

�
Ψ0,

Ψ0dα
0

|rn,c−dt|α � . Within this frame-

work, the objectives are

• Estimation of the posterior density p(xt|s1,c,1:t, · · · , sNc,c,1:t)
by active CH c and fusion of the statistics of these densities
of multiple CHs by the FC in a HSN-Type I.

• Estimation of the posterior density p(xt|z1,1:t, · · · , zC,1:t)
by the FC in a HSN-Type II.

3.1. CH Particle Filter Implementation in HSN-Type I

The following are the steps of the implementation of a particle filter
at a CH in HSN-Type I networks.

1. Initialization: x(m)
t′

∼N (µt′ ,Ξt′) where {µt′ ,Ξt′} are pro-
vided by the FC and m ∈ {1 · · ·M} denotes the particle in-
dex with M as the total number of particles.

2. Particle generation : The particles of the new state x
(m)
t are

generated as

ẋ
(m)
(1,2),c,t

∼ N (ẋ
(m)
(1,2),c,t−1, T

2
s σ

2
(1,2),u)

x
(m)

(1,2),c,t
= x

(m)

(1,2),c,t−1
+

Ts

2 
 ẋ
(m)

(1,2),c,t
+ ẋ

(m)

(1,2),c,t−1 �
Ψ

(m)
c,t ∼ N (µΨc,t−1

, σ
2
Ψc,t−1

). (6)

IV  970



3. Weight update and normalization:

w̃
(m)
c,t ∝ w

(m)
c,t−1

Nc�
n=1

p(sn,c,t|x
(m)
0:t ) (7)

w
(m)
c,t =

w̃
(m)
c,t�
w̃

(m)
c,t

4. Estimation of transmitted kernel parameters:

µ̂c,t =
M�

m=1

w
(m)
c,t x

(m)
c,t

Σ̂c,t =
M�

m=1

w
(m)
t (x

(m)
c,t − µ̂c,t)(x

(m)
c,t − µ̂c,t)

�
.

The likelihood in (8) is evaluated using the following expressions:

p(sn,c,t = 1|x(m)
0:t ) = 1 − p(sn,c,t = 0|x(m)

0:t )

= � ∞

γ

p(yn,c,t|x
(m)
0:t )dyn,c,t = Q

�
γ − h(x1:2,t, rn,c) − µv

σv
� .

(8)

The FC collects the transmitted kernel parameters from the CHs
and utilizes them in fusion of the posterior densities of multiple ac-
tive CHs as described in the next subsection.

3.2. Fusion Center in HSN-Type I

We denote sc,t = {s1,c,t, · · · , sNc,c,t} as the set of sensor measure-
ments in cluster c at time instant t, sc,1:t = {s1,c,1:t, · · · , sNc,c,1:t}
as the set of sensor measurements from time instant 1 to t and
s1:Ca,t = {s1,1:t, · · · , sCa,1:t} as the set of all sensor measure-
ments in Ca clusters from time instant 1 to t. Let us consider mea-
surements evolving from sensors of two different clusters (Ca = 2).
The joint posterior density of the target dynamics can then be derived
as

p(x0:t|s1:2,1:t) = p(x0:t|s1:2,t, s1:2,1:t−1)

∝ p(s1,t, s2,t|xt,x0:t−1, s1:2,1:t−1)p(xt|x0:t−1, s1:2,1:t−1)

×p(x0:t−1|s1:2,1:t−1)

∝
p(xt|s2,1:t)

p(xt|s1,1:t−1)

p(xt|s2,1:t)

p(xt|s2,1:t−1)
p(xt|xt−1)p(x0:t−1|s1:2,1:t−1).

(9)

assuming independence among the sensor measurements {s1,t, s2,t}
conditioned on xt [8]. Generalizing equation (9) for Ca number of
active clusters, we have

p(x0:t | s1:Ca,1:t) ∝
Ca�
c=1

p(xt | sc,1:t)

p(xt | sc,1:t−1)
×

p(xt | xt−1)p(x0:t−1 | s1:Ca,1:t−1) (10)

which is the optimal recursive fusion equation. The CHs approxi-
mate the sampled based representations of the distributions p(xt |
sc,1:t−1) and p(xt | sc,1:t) as Gaussians, i.e., p(xt | sc,1:t−1) �

N (µ̃c,t, Σ̃c,t) and p(xt | sc,1:t) � N (µ̂c,t, Σ̂c,t). Therefore, from
(10) we have

p(xt | s1:Ca,1:t) ∝
Ca�
c=1

N (µ̂c,t, Σ̂c,t)

N (µ̃c,t, Σ̃c,t)

× p(xt | xt−1) p(x0:t−1 | s1:C,1:t−1)

∝
N (µ̂t, Σ̂t)

N (µ̃t, Σ̃t)
p(xt | xt−1) p(x0:t−1|s1:Ca,1:t−1)

where

Σ̂
−1

t = Σ̂
−1

1,t + Σ̂
−1

2,t + · · · + Σ̂
−1

Ca,t

µ̂t = Σ̂t � Σ̂−1

1,t µ̂1,t + Σ̂
−1

2,t µ̂2,t + · · · + Σ̂
−1

Ca,tµ̂Ca,t �
Σ̃

−1
t = Σ̃

−1
1,t + Σ̃

−1
2,t + · · · + Σ̃

−1
Ca,t

µ̃t = Σ̃t � Σ̃−1
1,t µ̃1,t + Σ̃

−1
2,t µ̃2,t + · · · + Σ̃

−1
Ca,tµ̃Ca,t � .(11)

A particle filter based implementation of the fusion equation (10),
is similar to the CH particle filter implementation outlined in sub-
section 3.1 except for the weight calculation, which is performed as

w̃
(m)
t ∝

N (µ̂
t
,
ˆ
Σt)

N (µ̃
t
,
˜
Σt)

. The posterior density is then approximated by

a Gaussian distribution whose statistical terms are utilized in initial-
izing the particle filter on the CHs that may be active in the next or
future time instants.

3.3. FC Particle Filter Implementation in HSN-Type II

In a generic SMC algorithm, when the parameters of the state transi-
tion equation are known, the particles are easily generated and hence
the main task lies in the calculation of the likelihood for updating
the weights. The situation in HSN-Type II is also very similar. The
initialization and particle generation proceeds as described in sub-
section 3.1. The expression for calculating the likelihood is given
by

p(zt|xt) =
C�

c=1

p(zc,t|xt) =
C�

c=1

p � Nc�
n=1

sn,c,t|xt � .

The probability mass functions p(zc,t|xt) can be obtained by sum-
ming over all possible combinations of sensor transmitted data such
that zc,t =

� Nc

n=1 sn,c,t. However the number of such combina-
tions is relatively large for even small Nc and zc,t. To reduce the
computational complexity of the problem, we propose to estimate
sc,n,t given {zc,t,x

(m)
t }. The task of assigning sc,n,t = {1, 0} is

performed as follows:

• Draw the samples of the state vector x
(m)
t and sensor mea-

surements y
(m)
n,c,t using (4) and (1), respectively.

• ∀n ∈ {1 · · ·Nc} and c ∈ {1 · · ·C} , obtain
ωn,c,t = 1

M

�
m

I(y
(m)
n,c,t ≥ γ) where I(·) is the Bernoulli

indicator function.
• ∀c ∈ {1 · · ·C} sort the elements of the set {ω1,c,t, · · ·ωNc,c,t}

in decreasing order and obtain the indices of the first zc,t sen-
sors . Set the value of sc,n,t for the sensors with these indices
to 1 and the remaining to 0.

The likelihood is then approximated as

p(zt|xt) ≈
C�

c=1

Nc�
n=1

p (sn,c,t|xt) (12)

and p (sc,n,t|xt) is obtained using (8).
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System Parameters Value
Sensing Field Dimensions 650m × 750m

No of Cluster Units 50
No of Sensors 480

Sensor Threshold γ 56.70
Reference Power Ψ0 5000

No of particles 2000
Sampling Period 1s

Total Observation Period 60s
Mean of Sensor Noise µv 1

Variance of Sensor Noise µv 0.01
Observation noise parameter σ2

1,u 0.1
Observation noise parameter σ2

2,u 0.2

Table 1. System Parameters and their values

4. SIMULATIONS, RESULTS AND DISCUSSION

In our computer simulations we have considered a sensing field of
dimensions 650m×750m with 50 CHs and 480 sensors in the sens-
ing field deployed randomly (using stratified sampling methods).
Sensors were clustered using standard hierarchical clustering algo-
rithms. Table 1 lists the values of the parameters used in simulating
the target trajectory and sensor network. In the simulation of the
SMC methods, particles were initially drawn from a Gaussian dis-
tribution with a known µ0 = [0, 0, 5, 5]� and a covariance matrix
Ξ=diag(30, 30, 5, 5). One hundred target trajectories were gener-
ated for which the root mean squared error (RMSE) in estimating
the target dynamics was computed.

In Fig 2, we plotted the RMSEs of the two networks for α = 2.5
and spatially distributed known and unknown α. We modeled α as a
spatially correlated truncated normal random variable∼ NT (µα, Ξα, a, b),
with covariance matrix Ξα,i,j = cov(αi, αj) = e−0.3dij where dij

represents the Euclidean distance between points i and j. The results
show that the error in estimating the position of the target in the 2-D
Cartesian coordinate system is around 10m and the errors in estimat-
ing the velocities are less than 1.6 m/s. Sensitivity on the knowledge
of the attenuation parameter α in the proposed algorithms was more
carefully studied. In another experiment, the attenuation parameter
α was unknown, but constant for all the sensors. Fig. 3 shows the
RMSE errors when α was assumed to be 2, 3, and 4 when its true
value was 2.5. All these results suggest that when there are large
errors in the assumed values of α, the RMSEs may be unacceptably
large.

5. CONCLUSION

In this paper we have presented SMC algorithms for target tracking
and data fusion in two-tiered HSNs with compressed sensor data.
The proposed algorithms show good performance in estimating the
dynamics of the target trajectory. We have also presented some sim-
ulation results that outline the sensitivity of the proposed algorithms
when certain system parameters like the attenuation parameter of the
sensor model are unknown.
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distributed α.
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