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ABSTRACT

Existing approaches for information extraction in wireless sensor
networks are heavily geared towards in-network processing, which
generally incurs excess delay and energy consumption due to the at-
tendant tasks of information routing and coordination between nodes.
In this paper, we introduce an alternative concept of Active Wireless
Sensing in which a wireless information retriever (WIR) interrogates
a select ensemble of nodes for rapid and energy-efficient retrieval of
desired information. Active Wireless Sensing has two primary at-
tributes: 1) the sensor nodes are “dumb” in that they have limited
computational ability, and ii) the WIR is computationally powerful,
is equipped with an antenna array, and directly interrogates the sen-
sor ensemble with wideband space-time waveforms. Our approach
is based on an intimate connection between Active Wireless Sensing
and wideband multi-antenna wireless channels in multipath propaga-
tion environments: the sensor nodes play the role of active scatterers
and generate a multipath response to WIR’s interrogation signals.
We illustrate the basic communication architecture in Active Wire-
less Sensing and the corresponding signal processing at the WIR.
Preliminary simulation results are presented to illustrate a fundamen-
tal rate versus reliability tradeoff in Active Wireless Sensing.

1. INTRODUCTION

Existing approaches to information extraction in a wireless sensor
network are heavily geared towards in-network processing where
either the network as a whole obtains a consistent estimate of de-
sired information (e.g., field data, or some summary statistic), or the
distributed information is routed to a decision center via multi-hop
routing [1]. However, in-network processing generally incurs excess
delay and energy consumption due to the attendant tasks of informa-
tion routing and coordination between nodes (e.g., in-network itera-
tive algorithms). In this paper we propose an alternative approach —
Active Wireless Sensing — in which a wireless information retriever
(WIR) interrogates a select ensemble of sensor nodes for rapid and
energy-efficient retrieval of desired information (see Fig. 1). Active
Wireless Sensing has two primary attributes: i) the sensor nodes are
relatively “dumb” in that they have limited computational power, and
ii) the WIR is computationally powerful, is equipped with a multi-
antenna array, and initiates the information retrieval by interrogating
the nodes with wideband space-time waveforms.

Active Wireless Sensing is similar, in terms of the underlying
physics, to the concept of Imaging Sensor Nets that has been in-
dependently proposed recently [2, 3] based on radar imaging princi-
ples. In contrast, our approach is based on an intimate connection be-
tween Active Wireless Sensing and communication over space-time
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Fig. 1. Active Wireless Sensing: basic communication architecture.

multiple antenna (MIMO) wireless channels in a multipath environ-
ment: sensor nodes act as active scatterers and generate a multipath
signal in response to WIR’s interrogation signals. A key idea behind
Active Wireless Sensing is to separate different sensor responses by
resolving the multipath signals in angle and delay. This is facilitated
by a virtual representation of wideband space-time wireless channels
that we have developed in the past several years [4, 5]. Our proposal
for Active Wireless Sensing with an emphasis on distributed com-
munication protocols in conjunction with the Imaging approach of
[2, 3] also provides a connection between radar imaging and wire-
less communication over multipath channels. We believe that these
two complementary perspectives on the same problem can be fruit-
fully cross-leveraged.

The next section presents the basic space-time communication
architecture in Active Wireless Sensing by exploiting connections
with space-time multipath channels. Section 3 presents preliminary
simulation results to illustrate the performance of Active Wireless
Sensing. Section 4 provides a discussion of the results and conclud-
ing remarks.

2. THE BASIC SPACE-TIME COMMUNICATION
ARCHITECTURE

Consider an ensemble of K sensors uniformly distributed over a re-
gion of interest, as illustrated in Fig. 1. We assume that the WIR,
equipped with an M-element array, is sufficiently far from the sen-
sor ensemble, in the same plane, so that far-field assumptions apply.
The WIR interrogates the sensor ensemble by transmitting orthogo-
nal (spread-spectrum) signaling waveforms, { s, (¢)}, from different
antennas where each s, () is of duration 7" and (two-sided) band-
width W. Let N = TW >> 1 denote the time-bandwidth product
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of the signaling waveforms that represents the approximate dimen-
sion of the temporal signal space. Thus, the signal space of spatio-
temporal interrogation waveforms has dimension M N = MTW.

2.1. The Multipath Channel in Active Wireless Sensing

We make the practically feasible assumption that the WIR and the
sensor nodes are carrier (frequency) synchronized but not phase syn-
chronized. Furthermore, we assume that the phase offset between
each sensor and the WIR stays constant at least during the packet
duration 7". The basic communication protocol consists of the WIR
transmitting the space-time signal s(¢) = [so(t), s1(t), ..., sam—1(¢)]
in an interrogation packet to initiate information retrieval from the
sensor ensemble. The i*" sensor receives a superposition of the
transmitted waveforms

M-1 _
zi(t) = Z su(t — T,-,H)e_mi*“ )
n=0

where 7;,,, is the relative (fixed w.r.t. to the antenna in the middle of
the array) time-delay between the ‘" sensor and ;*" antenna, i,
is the corresponding relative phase offset, and we have assumed that
the interrogation packet is transmitted with sufficient power (or is
repeated enough) so that the noise in x;(t) is negligible.

In the far-field, and under appropriate choice of W (max,, 7;,, —
min,, 7;,, < 1/W for all ¢), the differences in the relative time de-
lays between a given sensor and different WIR antennas can be ne-
glected in the signaling waveform; that is, s, (t —7i,,.) & s, (t —74),
for all p1, where 7; denotes the common delay from the ¢-th sensor to
the WIR. The relative phase offsets in x;(¢) due to different antenna
elements {¢;,, } consist of a common (random) component ¢; and
a deterministic component that is captured by the steering/response
vector of the array. For simplicity, we consider a one-dimensional
uniform linear array (ULA) with spacing d and assume M to be odd
WLOG, and define M = (M — 1)/2. The array steering/response
vector for a ULA is given by

o o a T
a(f) = [eﬂ"M",...,1,...,e*ﬂ2”M“’] )

where the normalized angle 6 is related to the physical angle of
arrival/departure o (see Fig. 1) as 8 = dsin(p)/A. The steer-
ing/response vector represents the relative phases across antennas
for transmitting/receiving a beam in the direction 6. Thus, ;(t) can
be compactly expressed as

zi(t) = e % a (6:)s(t —7) (€)

where 6; denotes the direction of the i-th sensor relative to the WIR
array (see Fig. 1). We assume d = )\/2 spacing, where ) is the
wavelength of propagation, which corresponds to the sensor ensem-
ble projecting maximum angular spread (180 degrees) at the WIR
array; larger spacings can be used for smaller angular spreads.'

The i-th sensor encodes its measurement in 3; and modulates
x;(t) by (; and transmits it with energy £ after a fixed duration
(same for all sensors) following the reception of the interrogation
packet. We assume instantaneous retransmission from each sensor
for simplicity. Thus, the transmitted signal from the ¢-th sensor can
be expressed as

w0 = ) Sty = ) SeaT s ) @

'd = \/2sin(pmaz) spacing results is a one-to-one mapping between
0 e [—0.57 0.5] and ¢ € [—SOmaxv @maw} C [_7r/277r/2}'

where |3;] < 1 and each s,,(t) is of unit energy (so that y;(¢)
has energy £). The received vector signal at the WIR, »(t) =
[ro(t),r1(t),...,rm—1(t)]7, is a superposition of all sensor trans-
missions and by the principle of reciprocity it can be expressed as

r(t) = \/%Z Bie % a(0;)a” (0:)s(t — 7)) +w(t) (5

where 7; = 27; denotes the round-trip relative delay in the response
from the i‘" sensor, w(t) denotes an AWGN vector process repre-

T senting the noise at different WIR antennas, and the random phase

¢; includes a random component due to reception at the WIR. Let
Tmaz = Max; 7; and assume that min; 7, = 0 WLOG. Using (5),
the effective system equation relating the received vector signal at
the WIR to the transmitted interrogation signal can be expressed as

r(t) = \/% /2TmmH(t')s(t—t’)dt'+w(t) )
H(t) = Zaié(t—ﬂ)a(ei)aT(Gi) )

where o; = Bie 7%, and the M x M matrix H (t) represents the
impulse response for the space-time multipath channel underlying
Active Wireless Sensing. The delay spread of the channel is 27,44
and we assume that the packet signaling duration T° > 2744.
Note that the above system representation (6), even though it re-
lates the transmitted interrogation signal s(¢) to the received signal
at the WIR, is independent of the power used for transmitting the
interrogation packet. This is because after acquiring the signaling
waveform in the interrogation phase, each sensor retransmits it with
energy £ and the factor VE / /M reflects this normalization.

2.2. Sensor Localization Via Multipath Resolution

The active sensing channel matrix (7) has exactly the same form as
the impulse response of a physical multiple-antenna (MIMO) mul-
tipath wireless channel where the sensor data and phases {a;} in
the sensing channel correspond to the complex path gains associated
with scattering paths in a MIMO multipath channel [4, 5]. A key
motivation of this paper is to leverage insights from communica-
tion over multipath MIMO channels in the context of Active Wire-
less Sensing. In particular, we resort to the virtual representation
of MIMO multipath channels that is a unitarily equivalent represen-
tation of the physical sensing/multipath channel matrix [4, 5]. A
key property of the virtual channel representation is that its coeffi-
cients represent a resolution of multipath/sensors in angle and delay
(and Doppler in case of relative motion, not considered in this pa-
per) commensurate with the signal space parameters M and W (and
T), respectively. The virtual representation in angle corresponds to
beamforming in M fixed virtual directions: 6, = m/M , m =

—M,---, M. Define the M x M unitary (DFT) matrix

A= [a(=M/M),...,1,...,a(M/M)] 6))

9~

whose columns are the normalized steering vectors for the virtual
angles and form an orthonormal basis for the spatial signal space.
The virtual spatial matrix H v (¢) is unitarily equivalent to H (t) as

H(t)=AHy(t)AT - Hy(t) = A"H() A" 9)
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and the virtual coefficients, representing the coupling between the
m-th transmit beam and m/-th receive beam are given by

Hy (m/,m;t)=a™ (m/ /M)H (t)a” (m/M) (10)

K m/ . )
:M;ozig <9i - ﬁ) g (6& — M) §(t — 7)(11)

~|M YT o (6. - %) 5(t = 75) P (12)
€S0, m
where g(0) = & % is the Dirichlet sinc function that cap-
tures the interaction between the fixed virtual beams and true sensor
directions, the last approximation follows from the virtual path parti-
tioning due to beamforming in the virtual representation [4], J,, de-
notes the kronecker delta function, and S, = {7 € {1,--+ , K} :
—1/2M < 0; — m/M < 1/2M?} denotes the set of all sensors
whose angles lie in the m-th spatial resolution bin of width Af =
1/M, centered around the m-th beam. Thus, the virtual spatial rep-
resentation partitions the sensors in angle: it is approximately di-
agonal and its m-th diagonal entry contains the superposition of all
sensor responses that lie within the m-th beam of width 1/M.

The sensor responses within each spatial beam can be further
partitioned by resolving their delays with resolution At = 1/W.
Let L = [27mqo W] be the largest normalized relative delay. The
diagonal entries of the virtual spatial matrix can be further decom-
posed into virtual, uniformly spaced delays as [5]

Hy(m,m;t) ~ iHv(m,m,K)é(t—é/W) (13)
4=0K .

Hy (m,m,0) = M;aif (ei - M)smc(Wﬁ- —0) (4

~ Z Mozig2 (Hi — %) sinc(W7; — £)(15)

1€S9, mNSr ¢

where sinc(x) = sin(nz)/mx captures the interaction between the
fixed virtual and true sensor delays, and S;, = {i : —1/2W <
T — /W < 1/2W is the set of all sensors whose relative de-
lays lie within the ¢-th delay resolution bin of width A7 = 1/W.
Thus, the angle-delay virtual representation partitions the sensor re-
sponses into distinct angle-delay resolution bins: the virtual coeffi-
cient Hy (m, m, £) is a superposition of all sensor responses whose
angles and delays lie in the intersection of m-th spatial beam and
{-th delay ring (see Fig. 1). For a given number of antennas M and
for a given minimum spacing between sensors, the bandwidth W
can be chosen sufficiently large, in principle, so that there is exactly
one sensor in each angle-delay resolution bin (however this is not
necessary as discussed later). In this case, we can define one-to-one
mappings i(m, £) and (m(i), £(7)) that associate each sensor with
a unique angle-delay resolution bin. It follows from (15) that in-
formation retrieval from the ¢-th sensor amounts to estimating the
corresponding virtual angle-delay coefficient

hv(m, £) = Hv(m,m,£) < M Bi(m,e)Yi(m,e) (16)

where Yi(m,e) = € 7?1 g>(0; — m/M)sinc(WF — €)];—i(m,e)-

2.3. Information Retrieval Via Angle-Delay Beamforming

We now describe the basic signal processing at the WIR to estimate
the virtual angle-delay coefficients hy (m, £) from the received sig-
nal r(t). Define s(t) = A*sy(t) and rv(t) = Ar(t) where

sv(t) and rv (t) are the M-dimensional transmitted and received
signals in the virtual spatial domain (beamspace). Using (6) and (9),
the system equation (ignoring the fixed delay in re-transmission by
the sensor nodes) that relates the received signal to the transmitted
signal in the beamspace is

L
Py (mit) ~ ,/% S b (m, €)sv (ms t — £/ W) +w(m;t) (17)
£=0

where v (m; t) and sy (m; t) denote the m-th components of rv- (¢)
and sv (t), and {w(m;t)} are ideally i.i.d. AWGN noise processes
with PSD o2 but in practice will include interference from active
sensors in other resolution bins. Recall that each sy (m; t) is a unit-
energy pseudo-random waveform with bandwidth W and duration
T (e.g., a direct-sequence spread spectrum waveform) so that?

(sv(m,t —L/W),sv(m,t — £ JW)) = 5p_y . (18)

Thus, correlating each 7y (m;t) with delay versions of sy (m;t)
yields the sufficient statistics for information retrieval

Zmye = (rv(m,t),sv(t —£/W)) (19)

TH2Tmax
/ rv(m,t)sv(t —£/W)dt (20)
0

Q

VMEBi(m,e)Vi(m,e) + Wm.e (21)

where we have used (16) and {wm, ¢} are ideally i.i.d. Gaussian
with variance o2 but in practice will include interference from other
bins. Note that the factor v/M reflects the M-fold array gain or the
beamforming gain associated with an M -element antenna array.

3. ILLUSTRATIVE NUMERICAL RESULTS

ol
ANGLE

DELAY - B DELAY

(a) (b)

Fig. 2. Angle-delay resolution bins for active sensors. (a) Multiple
distributed events. (b) A single event in multiple co-located bins.

A single spread-spectrum waveform is used for all virtual spa-
tial beams: sy (m;t) = g(t) for all m, where a length N = 127
pseudo-random binary code is used for g(¢). We consider both co-
herent (BPSK) and non-coherent (on-off) sensor transmissions. In
the coherent case, we assume that the phases {¢;} remain coher-
ent over two packet intervals and each sensor transmits two bits for
each information bit: a training bit from which the WIR estimates
its relative phase, followed by the information bit. We consider
M = L = 11 corresponding to a total of M L = 121 angle-delay
resolution bins and illustrate the performance of Active Wireless
Sensing in two extreme cases depicted in Fig. 2, involving K = 11
and K = 12 active sensors.

2The cross-correlation is on the order of 1/N = 1/TW and thus very
small for large V.
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The first case (Fig. 2(a)) represents 11 distributed events cap-
tured by sensors in distinct bins. Each sensor sends one bit of in-
formation to encode its measurement in each transmission. We as-
sume that the distributed events are independent and for each event
the sensor measurements are independent in different transmissions.
Thus, the transmission bits are i.i.d. across sensors (space) as well as
across time and a total of 11 bits are retrieved in each transmission
interval. The correlator outputs of active bins® are independently
processed to decode the corresponding sensor transmissions. The
bit-error-rate (BER) as a function of the transmit SNR (per sensor) is
shown in Fig. 3(a) for both coherent and non-coherent transmissions.
The ideal non-coherent curve represents a benchmark in which the
sensors are located at the center of the bins to minimize interfer-
ence between sensors. All other BER plots involve averaging over
random sensor locations within their bins to fully simulate interfer-
ence. Non-ideal, non-coherent detection incurs a loss in SNR and
also exhibits a BER floor of ~ 2 x 10~* around 15dB due to inter-
ference. Remarkably, coherent detection performs quite well even in
the presence of interference and for training SNR as low as 0dB.

{| —£&— Coherent - Perfect Phase
—<— Coherent — Phase Est. (5dB)
;| —&— Coherent — Phase Est. (0dB) [§
—=— Coherent - Phase Est. (~5dB)
—+— Non-Coh. - Ideal

i| —*— Non-Coh. - Non Ideal

0 5 10 15 20
TRANSMIT SNR

(a)
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Fig. 3. BER vs. SNR plots. (a) Independent sensor transmissions.(b)
Identical sensor transmissions.

The second case (Fig. 2(b)) represents a single localized event
observed by sensors in K = 12 adjacent bins. We expect the sensor
measurements to be highly correlated (localized event) in this case

3The location of active bins can be reliably determined by the WIR by
thresholding the correlator outputs in response to a training interrogation
packet. The sensors respond to a training packet with a sufficiently long
string of “1””’s to enhance the receive SNR at the WIR.

and we simulate it by making all sensors transmit the same informa-
tion bit sequence. Thus, a single bit of information is retrieved in
each transmission period. The correlator outputs for active bins are
coherently or non-coherently combined before making a decision.
This case exhibits a dramatic improvement in BER compared to the
first case due to the redundancy in sensor transmissions. Non-ideal
non-coherent detection performs nearly as well as ideal non-coherent
detection (no error floor) and coherent detection shows a 7dB gain
over non-coherent detection reflecting the X = 12-fold SNR gain
expected due to coherent combining of sensor transmissions at the
WIR.

We note that analytical expressions for BER can be obtained for
both cases using standard techniques [6] by approximating interfer-
ence as Gaussian. However, the threshold needs to be optimized for
the non-ideal non-coherent case. Details are omitted due to space.

4. DISCUSSION AND CONCLUSIONS

Active Wireless Sensing exploits MT'W signal space dimensions
in time, frequency and space for rapid and energy-efficient infor-
mation retrieval from a sensor ensemble. In effect, a maximum of
ML (L < TW) channels can be established for information re-
trieval by resolving sensors in angle and delay, which also gives a
sensor localization map at a resolution commensurate with M and
W. Transmissions from resolvable angle-delay bins are separated
by using M dimensions (M beams and 1 spreading code). The re-
maining M (TW — 1) dimensions can be exploited for increasing
the rate and/or reliability of information retrieval.

The numerical results illustrate an inherent rate-reliability trade-
off in Active Wireless Sensing. The rate of information retrieval
can be increased by sensing independent distributed events (Case
I) through N. < ML sensing channels, although at the cost of
reliability due to interference created by sensor location mismatch
with fixed virtual beams. On the other hand, reliability can be dra-
matically increased by using all N. channels for redundant local-
ized sensing (Case II) at the cost of rate. Similarly, multiple cor-
related sensor transmissions from within each resolution bin can be
exploited for reliability or power efficiency. We note that the power
consumption in our numerical results can be significantly reduced
by using independently coded transmissions from different sensors.
A combination of these strategies can be used to optimize the rate-
reliability tradeoff and energy efficiency in a given sensing task.

We have presented the basic communication architecture for Ac-
tive Wireless Sensing in this paper. There are many exciting av-
enues for future work. We are currently developing low-complexity
interference suppression strategies for increasing the reliability and
energy-efficiency in high-rate information retrieval.
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