
NONLINEAR FUSION OF MULTIPLE SENSORS WITH MISSING DATA

Alon Shalev Housfater, Xiao-Ping Zhang

Department of Electrical & Computer Engineering
350 Victoria Street

Ryerson University, Toronto, Canada
E-mail: {ashalev,xzhang}@ee.ryerson.ca

Yifeng Zhou

Defence R&D Canada - Ottawa
3701 Carling Avenue

Ottawa, Ontario K1A 0Z4
E-mail: yifeng.zhou@drdc-rddc.gc.ca

ABSTRACT

We introduce a new algorithm, multiple imputation particle
filter, to solve the problem of data fusion with missing data in
nonlinear state space models. The new algorithm is then ap-
plied to the problem of fusing observations by multiple asyn-
chronous radars. Simulated data is used demonstrate the ef-
fectiveness and performance of the fusing algorithm.

1. INTRODUCTION

Handling missing data has always been a part of statistical
analysis, which frequently occurs in various surveys and ex-
periments [1], [2]. Missing data issues also occur in many
signal processing applications [3], one important example is
data fusion; most realizations of sensor networks operate in an
asynchronous manner due to the difficulty in synchronizing
observations across multiple independent sensors. For exam-
ple, in a radar network the radars might be many miles apart,
thus making it difficult to synchronize their observations [4].
There are several standard approaches in dealing with missing
data; one is to employ linear prediction techniques to align
the data to the instance of missing data, others include for-
mulating a Kalman filter with a time-varying transition ma-
trix that accounts for the missing observations [4]. Also, one
can apply the EM algorithm to resolve the missing data [2].
These algorithms either assume a linear system or ignore the
state dynamics while the underlying observed system is of-
ten nonlinear; thus, available methods are not applicable for
nonlinear systems or fail to utilize the system’s nonlinearity.
Conversely, a well known estimation method in the context of
nonlinear systems is the particle filtering algorithm [5]; how-
ever, particle filtering does not incorporate the missing data
behavior into the estimation. Therefore, we need to confront
the problem of performing fusion on a nonlinear system in the
presence of missing data.

In this paper we present a new method of fusing multiple
observations in a nonlinear system while accounting for miss-
ing data. This is done by combining particle filtering with a
multiple imputations technique. We replace the missing data
with imputations, i.e. randomly drawn values, to form multi-

ple complete data sets. Each data set is then particle filtered,
the results of those multiple particle filtering operations are
then combined as a weighted sum. We apply this new ap-
proach to data fusion in an asynchronous radar network by
regarding the asynchronous behavior as missing data at each
time instance.

2. PROBLEM FORMULATION

Consider a time-varying stochastic system with Xn denoting
the state at time instance n, It is assumed that Xn behaves
according to a non-homogenous Markov chain with transition
probabilities as described by the recurrence equation

Xn = ϕn(Xn−1,Wn), (1)

where Wn is random evolution noise, assumed to be inde-
pendent identically distributed stochastic process and ϕn is
the non-homogenous evolution transformation. Also, let the
system be observed by K sensors where the measurement is
modeled

Un =

⎛
⎜⎝

ψ1(Xn, Vn,1)
...

ψK(Xn, Vn,K)

⎞
⎟⎠ , (2)

where Un denotes the noisy observation of the state Xn such
that Vn,k is an i.i.d noise process and ψk is the measurement
transformation for sensor k, respectively. We denote the k-
entry of the K-dimensional vector Un as Uk

n .
In order to handle the missing data, we define a random

indicator variable Rn,k for each sensor k at time instance n,
this variable indicates if an observation is available or not

Rn,k =
{

0 observation is available from sensor k at time n
1 otherwise

.

Next, we define the missing information set Zn as the collec-
tion of Uk

n for all k = 1, . . . ,K such that Rn,k = 1. Simi-
larly, the available information set Yn is the collection of Uk

n

for all k = 1, . . . ,K such that Rn,k = 0.
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It is assumed that the missing data mechanism is indepen-
dent of the missing observations given the available observa-
tions, this can be written as

P (Rn,k|Zn, Yn) = P (Rn,k|Yn) for all k, n. (3)

This standard statistical assumption is known as Missing at
Random (MAR) [1]. Our objective is to obtain the poste-
riori probability density function of the state given all past
and present observations. We write this density function as
p(Xn|Y0:n) where Y0:n denotes all observations from the ini-
tial time instance to time instance n.

3. PARTICLE FILTERS AND MULTIPLE
IMPUTATIONS

3.1. Particle Filters for Data Fusion with No Missing Data

As stated in the problem formulation, we wish to fuse K
observations in a Bayesian sense, i.e., obtain the probability
density function p(Xn|Y0:n). We use the particle filtering ap-
proximation since a closed-form solution does not exist due
to the required integration [5]. The particle filter uses a set of
N simulated states, or particles, Xi

n and their corresponding
weights wi

n for each time instance n where i indexes the par-
ticles. These particles, {wi

n, Xi
n}N

i=1, discretize the density
p(Xn|Y0:n)

p(Xn|Y0:n) ≈
N∑

i=1

wi
nδ(Xn − Xi

n), (4)

where δ denotes the dirac delta function. The particles are
obtained in a recursive manner, at each time instance n the
particles of time instance n − 1 are used in sampling from an
importance function π(Xn|Xi

0:n, Y0:n)

Xi
n ∼ π(Xn|Xi

0:n, Y0:n) for 1 ≤ i ≤ N,

the particle weighting coefficient wi
n is obtained by the calcu-

lation

wi
n = wi

n−1

p(Yn|Xi
n)p(Xi

n|Xi
n−1)

π(Xi
n|Xi

0:n, Y0:n)
.

Note that in an application with missing data, the stan-
dard particle filtering algorithm does not incorporate the re-
sponse information Rn,k when performing the procedure nor
is it guaranteed to be stable. Thus, in the presence of signifi-
cant missing data mechanisms, the particle filter could diverge
or its performance be severely degraded.

3.2. Handling Missing Data with Multiple Imputations

Let Rn = [Rn,1, . . . , Rn,K ]T be the K-dimensional indicator
vector for the response of the sensors at time instance n. We

compute the probability density p(Xn|Yn, Rn) which can be
written

p(Xn|Yn, Rn) =
∫

p(Xn|Yn, Zn, Rn) p(Zn|Yn, Rn)dZn,

(5)
using the condition of MAR as defined in equation (3), it can
be shown [1] that equation (5) reduces to

p(Xn|Yn, Rn) =
∫

p(Xn|Yn, Zn) p(Zn|Yn)dZn.

Thus, we can approximately compute the density p(Xn|Yn)
by the Monte Carlo approximation

p(Xn|Yn) = lim
M→∞

1
M

M∑
j=1

p(Xn|Yn, Zj
n),

where Zj
n ∼ p(Zn|Yn) are the multiple imputations.

Notice that multiple imputations does not use the past ob-
servations and the state transition equation in estimating the
density p(Xn|Yn). This is significant since many real world
problems are well modeled by a Markov structure, which does
use past values to determine the present ones. Thus, in such
application, we expect that the performance of the multiple
imputations be degraded.

4. NEW MULTIPLE IMPUTATION PARTICLE
FILTERS

We present a new algorithm that resolves the mentioned de-
ficiencies in the particle filtering and multiple imputations al-
gorithms. This algorithm performs the fusion using both the
state and observation dynamics while accounting for the miss-
ing data.

4.1. Algorithm for Multiple Imputation Particle Filter

First, we draw the random observations, i.e. imputations,
from a proposal function φ

Zj
n ∼ φ(Zn|Y0:n) for j = 1, . . . , M,

where each imputation Zj
n has an associated weight pj

n such
that

∑
j pj

n = 1. Note that we can write the filtering proba-
bility density p(Xn|Y0:n) [3]

p(Xn|Y0:n) =
∫

p(Xn|U0:n−1, Yn)p(Zn|Y0:n)dZn. (6)

By forming the imputed data sets U j
n = {Zj

n, Yn} and taking
a Monte Carlo approximation, we can write equation (6) as

p(Xn|Y0:n) �
M∑

j=1

pj
np(Xn|U0:n−1, U

j
n). (7)
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Next, the algorithm performs particle filtering on each data
set U j

n to obtain an approximation as in equation (4)

p(Xn|U0:n−1, U
j
n) ≈

N∑
i=1

wj,i
n δ(Xn − Xj,i

n ), (8)

where Xj,i
n is the i particle for the j imputation at time in-

stance n and wj,i
n is its weight. Finally, the algorithm com-

bines the multiple particle filtering results by substituting equa-
tion (8) into equation (7) to obtain an approximation of the
desired density

p(Xn|Y0:n) �
M∑

j=1

N∑
i=1

pj
nwj,i

n δ(Xn − Xj,i
n ).

4.2. New Particle Based Imputation Procedure

In the discussion above we used the proposal function φ to
draw imputations but did not specify the function or how to
go about drawing the imputations. Usually, the imputation
process is implemented using Markov Chain Monte Carlo
(MCMC) methods [2]. However, in many applications, MCMC
techniques are not attractive since they are too computation-
ally intensive to be performed at each time instance. There-
fore, we suggest a new approach to performing the imputation
process. The imputing probability density p(Zn|Y0:n) can be
written

p(Zn|Y0:n) =
∫

p(Zn|Xn)p(Xn|Y0:n)dXn. (9)

Note that the filtering density p(Xn|Y0:n) appears inside the
integral, since we do not know this density, we are unable
to sample directly from p(Zn|Y0:n). However, equation (9)
suggests the following approximation. First, find a discrete
density p̃(Xn|Y0:n) that approximate the true filtering density
well. Then using relationship (9), one can obtain the discrete
density p̃(Zn|Y0:n), which will approximate the desired den-
sity p(Zn|Y0:n). We write the approximate filtering density
p̃(Xn|Y0:n) using a particle approximation

p̃(Xn|Y0:n) =
˜N∑

i=1

w̃i
nδ(Xn − X̃n,i),

where p(Xn|Y0:n) is approximated by the set {w̃i
n, X̃i

n}N
i=1 as

in equation (4). Substituting this approximation into equation
(9) we have

p(Zn|Y0:n) ≈
˜N∑

i=1

w̃i
np(Zn|X̃n,i).

We assume p(Zn|X̃n,i) = p(Yn|X̃n,i) then this mixture of
densities is known and can be sampled from in a straightfor-
ward procedure. Note that it is natural to extend this proce-
dure to an iterative procedure where p̃(Xn|Y0:n) is the output
of the previous iteration’s multiple imputations particle filter.

Briefly, an outstanding issue in this discussion is that of
convergence. It turns out that the algorithm does converge
in a certain sense; using ideas from [6], we have obtained
almost sure weak convergence results under some regularity
conditions.

5. APPLICATION - ASYNCHRONOUS RADAR
NETWORK

Many radar systems are implemented using a radar network
in order to cover a large area and increase reliability, these
radars transmit observations asynchronously due to the large
distances between the radars. We begin by formulating the
radar network’s state space model and then proceed to show
simulations of the performance of the multiple imputation
particle filter compared against the EM algorithm.

5.1. Multiple Radars Model

Consider K radars measuring a common target. The target
motion is described by a simple near constant velocity state
model [4]

Xn+1 = Φn+1Xn + Γn+1Vn,

where

Φn+1 =

⎛
⎜⎜⎝

1 ∆tn+1 0 0
0 1 0 0
0 0 1 ∆tn+1

0 0 0 1

⎞
⎟⎟⎠

, and

Γn+1 =

⎛
⎜⎜⎝

∆t2n+1/2 0
∆tn+1 0

0 ∆t2n+1/2
0 ∆tn+1

⎞
⎟⎟⎠ .

The state vector Xn is defined as Xn = [x(n), vx(n), y(n), vy(n)]T ,
and the system noise Vn ∼ N (0, Σv) is assumed to be a
Gaussian i.i.d. process. Let ϕ denote the cartesian to polar
transformation

ψ(Xn) =
(√

x(n)2 + y(n)2
tan−1

(
y
x

) )
.

Also, The radar observation model is given by

Y j
n = ϕ(Xn) + W j

n,

where Wn ∼ N (0, Σj
w) denotes the system noise, which is

assumed to be a Gaussian i.i.d. process. It is also assumed that
the system and observation noises are mutually independent.

5.2. Simulations

We simulate two radar network configurations: two asynchro-
nous radars and three asynchronous radars. We compare the
performance of the standard EM fusion [2] and the multiple
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imputation particle filter. The two radar network is simulated
with a 20 time units track where at each time instance, the
observations are repeated 30 times to obtain average perfor-
mance results. The three radar network is simulated with a 12
time units track where at each time instance, the observations
are repeated 10 times. Both simulations are implemented with
a particle filter that uses 250 particles for 40 imputations. The
performance results for the two radar network are shown in
Figure 1, we can see significant performance improvement
by the multiple imputation particle filter as compared to the
EM algorithm. We can also see some improvement by the
multiple imputation particle filter for the three radar network,
shown in Figure 2. However, the improvement is not as sig-
nificant as for the two radar network. This discrepancy can be
explained as follows, we expect that the more significant the
missing data behavior of the system, the more performance
gains we will realize from the multiple imputation particle
filter, which is designed to deal with missing data, as com-
pared to the EM algorithm. Due to the nature of the simu-
lation, the ratio of missing to available information for the
simulated two radar network is %50 while the missing infor-
mation ratio for the simulated three radar network is almost
always %25. Then, as expected, the multiple imputation par-
ticle filter shows significant performance gain for the more
aggressive missing data pattern of the two radar network.

5 10 15 20
Time Units

EM Algorithm
Multiple Imputation Particle Filter

Fig. 1. Multiple Imputation Particle Filter Performance - Two
Radars

6. CONCLUSION

In this paper, a novel multiple imputation particle filter ap-
proach was presented for fusing multiple sensor measurements
in the presence of missing data. The algorithm is suitable for
nonlinear systems in real time applications such as asynchro-
nous sensor networks. The algorithm draws imputations us-
ing a new particle based method, it then combines the multi-

2 4 6 8 10 12
Time Units

EM Algorithm
Multiple Imputation Particle Filter

Fig. 2. Multiple Imputation Particle Filter Performance -
Three Radars

ple imputations with a particle filtering technique. Simulated
data is used to demonstrate the effectiveness and performance
of the proposed algorithm. The results showed that the pro-
posed algorithm outperformed the widely used standard EM
algorithm.
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