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ABSTRACT

This paper describes an algorithm for target tracking in a distributed
network of binary proximity sensors that is robust to sensor failures.
Tracking with such sensors is a difficult problem as they only trans-
mit a single binary digit regarding the presence of a target. The op-
erational status of these sensors may also not be accurately known.
This paper describes a Gaussian mixture-based tracking algorithm
that addresses these two issues.

1. INTRODUCTION

Recent advances in low-power microsensors and wireless network
technology have led to an increase in the use of wireless sensor
networks for a variety of applications. Such networks are typically
made up of relatively cheap sensors, often termed motes, with lim-
ited processing resources and battery life [1]. The limited on-board
resources prevent significant computations being performed at the
sensor level. Instead, these sensors transmit information over wire-
less communication channels that have limited bandwidth to a cen-
tral processing node, which combines the data to perform tasks such
as detection, target tracking and classification. This paper examines
target tracking using binary proximity sensors, which transmit only
a single bit of information regarding the presence of a target within
their sensing range.

The simplest approach to tracking with binary proximity sen-
sors is to record the location of each mote which reported a detec-
tion and fit a straight line through these data points. The works of
[2, 3] are based on this approach. However, these methods do not
make use of all the available information. The absence of a detec-
tion in the predicted target location can also provide information on
the track prediction accuracy. The works of [4, 5, 6] are based on
particle filters [7] and are therefore able to use information from all
sensors to update the target track. This particle filtering based ap-
proach is capable of accurate tracking but can be computationally
expensive, particularly when there are multiple targets present. To
alleviate some of this computational burden [8, 9] propose a distrib-
uted particle filter based method. However, this requires significant
processing capabilities at each sensor node.

All the methods discussed above assume all the motes in the
surveillance region are functioning. These trackers therefore assume
the lack of a target detection means that the target is not near the
sensor. However, as these sensors are battery powered an alternative
explanation is that the mote is no longer operational. To track ro-
bustly with such sensors it is necessary for the central processor to
know which motes in the surveillance region are functioning. As the
wireless networking protocols employed by such sensor networks
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are ad hoc, such status information is not necessarily available at the
central processor as common routing protocols for such networks do
not require this [10].

In this paper, we propose an algorithm using Gaussian mixtures
that simultaneously tracks a target through a field of binary proxim-
ity sensors and also estimates which sensors are operational. This
algorithm is robust to sensor failures and is less computationally
complex than one based on particle filters. In addition, the central
processor can use the estimates of the probability a mote is opera-
tional to schedule targeted queries to individual motes, rather than
requiring status updates from all motes. The performance of this
tracker when tracking a single target is examined using simulations.

2. GAUSSIAN MIXTURE TRACKER

2.1. Target Motion Model

The target is assumed to evolve according to

xk|xk−1 ∼ N (Fkxk−1,Qk) (1)

for k = 1,2, . . . where N (µ,Σ) is a Gaussian distribution with mean
µ and covariance matrix Σ. The target state vector includes the po-
sition of the target in addition to other variables. The initial state is
assumed to be given as x0 ∼ N (µ0,P0) where µ0 and P0 are known.

2.2. Sensor Measurement Model

Let there be m sensors in the surveillance region with the position
of the jth sensor denoted as z j , which is known. At each sampling
instant t1,t2, . . . one or more sensors transmits a packet to the central
processing node indicating that they have detected a target within
their sensor range. Sensors that have detected nothing do not trans-
mit as the power constraints and bandwidth limits in such networks
make transmissions from each node in a sensor network at each sam-
pling instant infeasible [10]. It is assumed that some mechanism,
such as that discussed in [11], has been used to provide time syn-
chronisation.

Let yk = (yk,1,yk,2, . . . ,yk,m)′, yk, j ∈ {0,1} denote the collection
of sensor returns at time tk where yk, j = 1 indicates a transmission
was received from the jth sensor and a zero indicates nothing was
received. It is assumed that the sensors operate independently, which
leads to a measurement likelihood of the form

p(yk|xk) =
m

∏
j=1

p(yk, j|xk) (2)

There are two possible causes for the lack of a detection by a
mote. One is that the mote is operational but the signal has been
missed by the sensor. The other is that the mote itself has failed.
While it is possible for motes to transmit status information to the
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central node, this will only happen periodically and not necessarily
very frequently. It is possible that between status updates one or
more motes may have become inoperative due to battery exhaustion
or other hardware failures.1

We assume that during the lifetime of a particular target trajec-
tory motes do not fail. That is, the mote scenario is fixed but some of
the motes may be non-operational prior to the target entering the sur-
veillance region. Motes that transmit a detection packet during the
track lifetime are clearly alive, but one or more of the other motes
may not be.

Let Sk be the set of all possible mote configurations at time tk and
s j ∈ Sk be such that s j =

[
s j,i

]
i=1,...,m where s j,i = 1 if mote i is alive

and zero otherwise. Note that the size of the set of all possible mote
configurations prior to tracking is |S0| = 2m but this can be reduced
in practice if it is assumed that at most some fixed number of motes
dmax < m are dead. This is a reasonable assumptions as mote failures
will be relatively rare and a significant number of motes are required
to be alive for the network to remain connected.

It seems reasonable to assume that the probability a particular
sensor, when operational, will detect the target will be a decreas-
ing function of the range from the target to the sensor therefore a
Gaussian model has been used for convenience. This leads to the
following measurement likelihood for a single mote

p(yk,i = 1|xk,s j,i) =

{
0 s j,i = 0

PDG(zi;Hxk,Σ) s j,i = 1
(3)

p(yk,i = 0|xk,s j,i) =

{
1 s j,i = 0

1−PDG(zi;Hxk,Σ) s j,i = 1
(4)

where G(z;µ,Σ) = exp
(
− 1

2 (z−µ)′Σ−1(z−µ)
)

and H selects the

position elements from the target state vector. The positive definite
matrix Σ defines the “footprint” of the sensor while PD ∈ [0,1] deter-
mines the ability of the sensor to detect the target. These parameters
can vary between sensors but are assumed to be the same here for
notational convenience. Therefore

p(yk,i|xk,s j,i) =
[
s j,iPDG(zi;Hxk,Σ)

]yk,i (5)

×
[
1− s j,iPDG(zi;Hxk,Σ)

]1−yk,i

Denote by Dk the set of motes that transmitted a detection at time
tk and Uk, j the set of motes that did not detect the target but which
are assumed to be alive under scenario s j . With these definitions and
(5), the likelihood (2) can be written as

p(yk|xk,s j) = ∏
i∈Dk

[PDG(zi;Hkxk,Σ)] (6)

× ∏
i∈Uk, j

[1−PDG(zi;Hkxk,Σ)]

=
dk, j

∑
i=0

(−1)i
dk, j(i)

∑
r=1

∏
l∈Dk∪C

Uk, j
i (r)

PDG(zl ;Hkxk,Σ)

where dk, j = |Uk, j|, dk, j(i) =
(dk, j

i

)
and C

Uk, j

i (r), i = 0, . . . , |Uk, j|,
r = 1, . . . ,dk, j(i) is the rth collection of i integers from the set Uk, j.

1Note, intermittent failures to receive a detection packet from a sensor at
the central processor may also be due to packet loss in the network. This fail-
ure mode is not considered here as it is beyond the scope of this paper. Works
such as [12], and references therein, have investigated the effect of random
packet loss on estimation performance for more sophisticated sensors.

Let zA,A ⊆ {1, . . . ,m} denote the concatenation of sensor locations
with indices in the set A, then the likelihood can be written as

p(yk|xk,s j) =
dk, j

∑
i=0

(−1)i
dk, j(i)

∑
r=1

Pak+i
D G

(
zM i,r

k, j
;Hak+ixk,Σak+i

)
(7)

where ak = |Dk|, M i,r
k, j = Dk ∪C

Uk, j

i (r), H j = 1 j ⊗H with 1 j denot-
ing a column vector of j ones, Σ j = I j ⊗Σ and ⊗ is the Kronecker
product.

2.3. Tracking Algorithm

The goal of the tracking problem is to recursively compute the poste-
rior density of the target state and mote reliability given the measure-
ment history, i.e. p(xk,s j|y1:k) for each s j ∈ Sk where y1:k represents
the measurements from time t1 to time tk. We will first derive the ex-
act computation of the posterior at time tk and then show how it can
be approximated by a single Gaussian using a Probabilistic Data As-
sociation (PDA) approach [13]. Note, we do not assume that the
actual distributions will necessarily be Gaussian, instead we believe
this approach may provide an acceptable tradeoff between system
assumptions and computational complexity. More detailed evalua-
tions, including field trials using Berkeley/Crossbow motes [14, 15],
are planned to confirm this.

The exact computation of the posterior density for a fixed s j is
given by

p(xk,s j|y1:k) =
p(yk|xk,s j)p(xk,s j|y1:k−1)

p(yk|y1:k−1)
(8)

Assume that the posterior density at time tk−1 is given by

p(xk−1,s j|y1:k−1) = w j
k−1N (xk−1; x̂ j

k−1|k−1,P
j
k−1|k−1) (9)

for each s j ∈ Sk−1 where the weights, w j
k−1, are such that w j

k−1 ∈ [0,1]

and ∑ j w j
k−1 = 1. It is then straightforward to show that the prior at

time tk is given by

p(xk,s j|y1:k−1) =
Z

p(xk|xk−1)p(xk−1,s j|y1:k−1)dxk−1 (10)

= w j
k−1N (xk; x̂ j

k|k−1,P
j
k|k−1) (11)

where

x̂ j
k|k−1 = Fkx̂ j

k−1|k−1 (12)

P j
k|k−1 = FkP j

k−1|k−1F′
k +Qk (13)

Substituting (7) and (11) into (8) yields, after some manipula-
tions

p(xk,s j|y1:k) = δ−1
k

dk, j

∑
i=0

dk, j(i)

∑
r=1

α
i,r, j
k N (xk; x̂i,r, j

k|k ,Pi,r, j
k|k ) (14)

where

α
i,r, j
k = w j

k−1(−1)iPak+i
D

√
|2πΣak+i|

|2πSi, j
k |

(15)

×G
(

zM i,r
k, j

;Hak+i, x̂
j
k|k−1,S

i, j
k

)
δk = ∑

j
∑

i
∑
r

α
i,r, j
k (16)

x̂i,r, j
k|k = x̂ j

k|k−1 +Ki, j
k

[
zM i,r

k, j
−Hak+ix̂

j
k|k−1

]
(17)

Pi,r, j
k|k =

[
I−Ki, j

k Hak+i

]
P j

k|k−1 (18)
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with

Si, j
k = Hak+iP

j
k|k−1H′

ak+i +Σak+i (19)

Ki, j
k = P j

k|k−1H′
ak+i

(
Si, j

k

)−1
(20)

Therefore, if at time tk−1 the posterior is a single Gaussian as in (9),
then the posterior at time tk is composed of a mixture of O(|Sk|2m−ak )
Gaussians, which is a function of the number of motes that did not
transmit a detection and the number of possible mote scenarios. It
should be noted that in the above derivation non-detections are con-
sidered from all motes. In practice, it is only necessary to consider
non-detections from motes whose sensing regions overlap those of
the motes that declared a detection. This significantly reduces the
number of components in the mixture. Even so, the number of Gaus-
sians increases exponentially with time, so exact computation of the
posterior density is infeasible.

Note that (14) is not a Gaussian mixture in the usual sense since
the weights are not constrained to the interval [0,1]. This prevents
the use of many of the more sophisticated mixture reduction algo-
rithms such as those described in [16]. These algorithms require the
pairwise merging of suitable components. However, if the weights
can be negative then there is a possibility that such merging will re-
sult in a component with a negative definite covariance matrix. This
problem is avoided if all components are merged into one such that
the overall mean and covariance matrix are preserved. Therefore,
following the PDA approach, we approximate the posterior density
for a fixed s j at time tk by a single Gaussian

p(xk,s j|y1:k) ≈ w j
kN (xk; x̂ j

k|k,P
j
k|k) (21)

where

x̂ j
k|k =

bk

∑
i=0

dk, j(i)

∑
r=1

γ
i,r, j
k x̂i,r, j

k|k (22)

P j
k|k =

bk

∑
i=0

dk, j(i)

∑
r=1

γ
i,r, j
k

[
Pi,r, j

k,k +(x̂ j
k|k − x̂i,r, j

k|k )(x̂ j
k|k − x̂i,r, j

k|k )′
]

(23)

γ
i,r, j
k = α

i,r, j
k

/
∑

i
∑
r

α
i,r, j
k (24)

The updated weights are given by

w j
k =

∑i ∑r α
i,r, j
k

∑ j ∑i ∑r α
i,r, j
k

(25)

The weights, w j
k, approximate P(s j|y1:k), i.e. the posterior probabil-

ity that mote scenario s j is correct. From (25) the posterior proba-
bility mote i is operational is given by

P(mote i alive|y1:k) = ∑
s j∈Sk
s j,i=1

w j
k (26)

Finally, the output of the tracker at time tk is then

x̂k|k = ∑
s j∈Sk

w j
kx̂ j

k|k (27)

Pk|k = ∑
s j∈Sk

w j
kP̃ j

k|k (28)

where

P̃ j
k|k = P j

k|k +
(

x̂k|k − x̂ j
k|k

)(
x̂k|k − x̂ j

k|k

)′
(29)

3. SIMULATIONS

To show the effect of estimating mote reliability on target tracking
performance simulations were carried out of single target moving
through a fixed field of 33 motes where up to dmax = 2 may be dead.
In this example only one mote was actually dead. This simple sce-
nario has been used as the effect of the mote failure can be clearly
distinguished. A more realistic scenario would, of course, have a
larger number of sensor nodes and more inoperative motes.

Three variants of the tracking algorithm of Section 2 were used.
The first variant is called the bPDA tracker as it believes all motes
are alive. For this tracker, the only valid mote scenario is S0 ={

s j,i =1, i = 1, . . . ,m
}

. The second variant is called the ePDA tracker
as it estimates which motes are alive using the algorithm as described
in Section 2.3. The final variant is called the kPDA tracker as this
tracker knows which motes are alive, i.e. there is only one possible
mote scenario but it is the correct one. In each case, 1000 Monte
Carlo simulations were run.

The target trajectory was a straight line in two dimensions per-
turbed by random noise with the state at time tk being given by
xk ∈ IR4, containing the position and velocity in each direction and
Fk and Qk given by

Fk = I2 ⊗

[
1 ∆tk
0 1

]
(30)

Qk = I2 ⊗q2

[
∆t3

k
3

∆t2
k

2
∆t2

k
2 ∆tk

]
(31)

where ∆tk = tk − tk−1 and Im is the m×m identity matrix.
Figure 1 shows the mote field with the true target track as the

solid line and the estimated tracks from the ePDA and bPDA trackers
for a single Monte Carlo run. Motes that are operational are shown
by circles and the defunct motes by asterisks.

0 1 2 3 4 5
0.4

0.6

0.8

1

1.2

1.4

1.6

X

Y

Fig. 1. Output of a single Monte Carlo run. Operational motes are
shown by ’o’ and defunct motes by ’*’. The true target path is shown
by the solid line, the ePDA track by the dashed line and the bPDA
track by the dotted line.

Figure 2 shows the RMS errors in the position estimates in the
y coordinate. The performance of each tracker in the position es-
timates in the x coordinate and the velocity estimates are similar
and have been omitted due to space limitations. The target passes
through the sensor region of the defunct mote, mote 14, during scans
7 to 14. It can be seen from Figure 2 that the estimates of the po-
sition in the y coordinate are biased at the times when the tracking
algorithm does not know that the mote is inoperative. The perfor-
mance of the kPDA tracker demonstrates the best results that could
be obtained by this style of tracking algorithm.
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Fig. 2. RMS position errors in the y coordinate.

While both the ePDA and bPDA tracker exhibit bias, the ePDA
performance is superior to that of the bPDA. It would be expected
that the distinction between algorithms would be more pronounced
when a larger number of motes are inoperative. However, even the
performance shown here for the ePDA algorithm suggests that it is
able to reliably estimate sensor health from the available data. This
is illustrated in Figure 3 which shows the probability mote 14 is op-
erational over time, as computed by the ePDA tracker using (26),
which shows a significant drop when the target enters its sensing
range. The probabilities for all other motes remained over 98% at all
times.
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Fig. 3. Probability mote 14 is operational.

4. CONCLUSIONS

When tracking with binary proximity sensors, including information
about which motes did not detect the target can improve tracking
performance. However, to do this robustly requires knowing which
motes are alive and which have failed as such sensors are not neces-
sarily reliable. In this paper we have described a tracking algorithm
which is robust to sensor failures as it simultaneously estimates the
probability a mote is operational as well as the track state. The ap-
proach described here is being extended to incorporate more gen-
eral sensor measurement models. Using this approach as a basis for
scheduling mote status checks is also being investigated.
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