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1. ABSTRACT

We consider the problem of detecting and localizing a material re-

lease utilizing sparse sensor measurements. We formulate the prob-

lem as one of abrupt change detection. The problem is challenging

because of the sparse sensor deployment and complex system dy-

namics. We restrict ourselves to propagation models consisting of

diffusion plus transport according to a Gaussian puff model. We de-

rive optimal inference algorithms, provided the model parametriza-

tion is known precisely, within a hybrid detection-localization hy-

pothesis testing framework with linear growth in the hypothesis space.

The primary assumptions are that the mean wind field is determinis-

tically known and that the Gaussian puff model is valid. Under these

assumptions, we characterize the change in performance of detec-

tion, time-to-detection and localization as a function of the number

of sensors. We then examine some performance impacts when the

underlying dynamical model deviates from the assumed model.

2. INTRODUCTION

The problem of detecting and localizing a material release utiliz-

ing sparse sensor measurements can be cast in a general framework

applicable to many fields. In any distributed sensor network applica-

tion, questions arise as to how the network should be configured to

monitor the given environment as well as how the sensor measure-

ments should be combined in an informative manner. In situations

involving hazardous material, rapid detection is an important con-

sideration while localization may be secondary.

It is frequently the case that only a sparse set of sensors can be

deployed to monitor an area. In addition, these sensors are sensi-

tive to local regions and as such yield only a myopic view of the

environment when used in isolation. However, by defining a dy-

namical model it is possible to combine measurements from several

sensors with non-overlapping fields of view so as to improve detec-

tion, time-to-detection, and localization beyond that obtained using

a single sensor.

We restrict ourselves to scenarios where material propagation

is reasonably well modeled by diffusion plus transport. Our goal

is to characterize both the improvement of estimation performance

attained by combining multiple sensor measurements as well as to

characterize the sensitivity in performance to mismatched models.

We derive optimal inference algorithms for the case where the

model is perfectly known, characterizing performance for a set of

sensor configurations with regard to probability of detection Pd, time

to detection Td, and localization in time and space. This is accom-

plished via a series of controlled experiments using synthetic data.

Several researchers have considered Bayesian approaches to bi-

ological or chemical release detection. Release detection in hyper-

spectral imagery has been considered by [1] exploiting properties

of isolated pixel intensities. Nofsinger uses ensemble Kalman fil-

tering approaches for detecting chemical plumes [2]. Nehorai dis-

cusses plume modeling and moving release sources [3] without ex-

plicit consideration of the dynamics. Both O’Donnell [1] and Ne-

horai [3] utilize Generalized Likelihood Ratio formulations in their

approaches. Our approach is novel in its use of abrupt change de-

tection which allows for compact representation of hypotheses with

only linear growth in complexity. Broad coverage of abrupt change

detection is provided in [4].

3. PROBLEM FORMULATION

In a sparse sensor network, it will often be the case that there is a de-

lay in observability of the event. The goal of the sensor network,

then, is to intelligently combine sensor measurements distributed

both temporally and spatially to first detect the release in a timely

manner and secondarily to localize the release in space and time.

The two goals are distinct in that reasonable detection may be ob-

tained from early measurements while localization in both space and

time generally relies on measurements aggregated over a longer time

period. Bayesian filtering approaches provide a framework for this

type of problem, presuming that the model parameters are available

and inter-sensor communication is possible.

To develop a hybrid detection-localization hypothesis framework

for abrupt changes, we modify the standard state space equations to

include a term which represents a localized event in time and space

(i.e. the release) whose effects persist over time.

Given a sparse sensor configuration and uncertainty regarding

the underlying dynamics (e.g. rate of diffusion, knowledge of the

wind field) it will generally be the case that the optimal inference

approaches under an assumed parametrization will degrade in both

detection and localization performance as compared to the matched

case. Our results indicate that optimal inference on mismatched

models yields reasonable detection performance at the cost of pre-

cise localization. Additionally, the methodology presented provides

a framework within which to study these questions in more detail.

3.1. Bayesian approaches for localization

We divide the area of interest into a set of small regions or cells. The

state of the system at time t is the mean particle concentration over

one time step of the set of cells. The granularity of the cells is at a

substantially finer resolution than the sensor placement.

We formulate a dynamical model for particle propagation by

representing the wind velocities (u, v) as the sum of a deterministic

and zero mean stochastic component, (ū, v̄)+(u′, v′), and assuming

that the release is an instantaneous point source. This results in the

following equation for computing the mean concentration of the ma-

terial at a location (x, y) after a time t given an initial concentration
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of co and diffusion coefficients (Kxx, Kyy) [5],

< c(x, y, t) > =
co

4πt(KxxKyy)
1
2

e
− (x−ūt)2

4Kxxt
− (y−v̄t)2

4Kyyt (1)

This Gaussian kernel is formed for every cell based on the given

wind vector and distributes the material accordingly. The total mean

particle concentration mapping, A(t;Vw), is the the sum of the new

concentration maps from each cell.

In order to model localized abrupt changes, we add a term to

the standard state space equations as in [6]. The advantage of this

approach is that it allows one to model a localized release in time

and space while capturing its persistent effects, which leads to an

efficient hypothesis testing approach.

If we assume a release in cell i of strength β at time φ, the state

space equations are given as follows:

x(t + 1) = A(t;Vw)x(t) + w(t) + βfi(t, φ) (2)

y(t) = C(t)x(t) + v(t) (3)

where w(t) and v(t) are independent Gaussian noise processes and

C(t) relates the state to the measurements y(t). By linearity, we can

decompose Equations 2 and 3 into xo(t) due to the background pro-

cess and γi(t, φ) which captures the persistent effect of the release

fi(t, φ).

x(t) = x0(t) + βγi(t, φ) (4)

y(t) = C(t)x0(t) + v(t) + βC(t)γi(t, φ) (5)

The utility of the decomposition is that the problem reduces to one of

detection in correlated noise (i.e. xo(t).) The detection formulations

are greatly simplified by whitening the data using a Kalman filter

and calculating the signature ρi(t, φ) of γi(t, φ) [6]:

ν(t) = ν0(t) + βρi(t, φ) (6)

3.2. Cell hypothesis testing framework

While the preceding framework has simplified the dynamical model

we are still left with the task of testing various release hypothe-

ses enumerated over space (cell index) and time. Additionally, the

model is parameterized by the unknown release amount β which we

estimate using a Generalized Likelihood Ratio (GLR).

Referring to Equation 6 and assuming that β is known for the

moment, we can construct an indexed set of hypotheses. The null

hypothesis, H0, indicates no release while the alternative hypothe-

ses, Hi,φ, indicates an event in cell i occurring at time φ. Note that

prior to time φ both the null and alternative hypotheses are identical.

H0 : ν(t) = ν0(t) (7)

Hi,φ : ν(t) = βρi(t, φ) + ν0(t) (8)

It is well known [6] that the sufficient statistics for this particular

hypothesis test are the correlation between the signal ρi(t, φ) and

the output ν(t),

di(t, φ) =

tX

τ=φ

ρT
i (τ, φ)V −1(τ)ν(τ) (9)

and the energy of the signal

ai(t, φ) =

tX

τ=φ

ρT
i (τ, φ)V −1(τ)ρi(τ, φ) (10)

resulting in a log-likelihood of

li(t, φ) = βdi(t, φ) − 1

2
β2ai(t, φ) =

1

2

d2
i (t, φ)

ai(t, φ)
(11)

for the hypothesis Hi,φ versus H0 given sensor measurements up to

time t. The last equality is a result of replacing β with its maximum

likelihood estimate.

Under the assumption of there being one and only one release,

the number of hypotheses grows linearly with time. The resulting

hypothesis tree after three time steps is shown in Figure 1. In prac-

tice, a sliding window is used to implement the inference algorithm.

This is justified by two related issues: it takes time for releases to

propagate to the nearest sensor and after a period of time additional

measurements do not contribute significantly to the probability of

detection. Specifically, the window enforces that only hypotheses of

a release occurring a maximum of M timesteps in the past are con-

sidered. The likelihood ratio test comparing H1, the hypothesis that

Fig. 1. Hypothesis tree for a region with n cells at time step 3. Hy-

pothesis hct represents a release in cell c at time t.

a release has occurred at any time or location, to H0, the hypothesis

of benign conditions, is:

l̂i(t, φ̂) ≷ η (12)

where the value of η is set using Neyman-Pearson criterion to specify

a fixed probability of false alarm, PF and l̂i(t, φ̂) � max
i,φ

li (t, φ).

4. EMPIRICAL RESULTS

We present a series of experiments in which we examine the utility

of this inference framework in combining information from multi-

ple sensors. The first set of experiments utilize a known mean wind

field, specifically no transport term, to characterize probability of

detection, time to detection, and localization in time and space as a

function of the number of sensors used. In the second set of experi-

ments, a sequence of increasing wind fields are incorporated into the

dynamical model, but not into the inference procedure. In the third

set of experiments, noise is generated on the mean wind field pro-

vided to the simulation, but the inference procedure only uses mean

wind field. The purpose of the second and third set of experiments

is to examine the robustness of this inference procedure to model

deviations.

To simplify the analysis, we consider the case where the release

is in the center of a room populated with an even grid of sensors. We

hypothesis over a central 13x13 cell area of interest, but simulate

over an area of 25x25 to reduce edge effects. There are four sensor

configurations we examine: 1,2,4, and 16. The 16 sensor are spaced

regularly throughout the 13x13 region and each other configuration

is a inner subset of the 16 sensors. A sensor is assumed to observe

the particle concentration throughout the entire cell in which it is
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located with a measurement noise standard deviation of 10 material

units per cell area. The diffusion coefficient of the Gaussian kernel

is symmetrically 0.5. The process noise standard deviation is taken

to be 100 material units per cell area.

For Sections 4.1 and 4.2, we restrict ourselves to a pure diffu-

sion model in order to avoid the effects of wind which could blow

the material towards or away from the nearest sensor. In Section

4.3, we examine robustness to increasing wind bias and temporally

and spatially white noise on the mean wind field. For every release

amount and sensor configuration scenario, 100 Monte Carlo simula-

tions were performed.

The size of the sliding window, M, was determined to be 14 time

steps by analyzing the minimum time from the onset of the release

by which the accrual of additional information was insignificant in

the case of pure diffusion. In the four or 16 sensor configurations,

pure diffusion provides the worst case scenario in time to nearest

sensor.

The log-likelihood ratio threshhold was determined experimen-

tally to achieve a false alarm rate of 0.01 on 1,500 Monte Carlo sim-

ulations under benign conditions (i.e. no release) for the four and 16

sensor configurations. The values are 9.55 and 10.85, respectively.

These thresholds were used in all experiments conducted.

4.1. Detectability

Figure 2(a) shows the number of detections achieved out of 100 sim-

ulations as a function of release magnitude for various sensor con-

figurations. The figure demonstrates that significant gains are made

in detectability of small release amounts going from one to four sen-

sors while there is only marginal improvement from four to 16. For

a sufficient release amount, all sensor configurations are able to reli-

ably detect. The reason for the insignificant increase in performance

between four and 16 sensors in Figure 2 is that under pure diffu-

sion with a release in the center, at least four sensors will see the

release in both configurations. For large release amounts these four

sensors provides significant evidence of a release while for small re-

lease amounts, the outer sensors do not accrue enough information

to improve detection.

Similar reasoning holds in the corresponding time to first detec-

tion plots in Figure 2(b). All releases occurred at time step 16. The

convergence for large release amounts is indicative of the time re-

quired for the release to propagate to the nearest sensor and is purely

a function of the distance between the release and the sensor and thus

sensor density.
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Fig. 2. (a) Number of detections per 100 simulation data sets and

(b) time to first detection versus release amount. Actual release time

was 16 seconds.

4.2. Localization uncertainty

In Figure 3 we examine one time slice of the hypothesis space (t=30).

At any given time, there are multiple hypotheses of releases in a

given cell, each differentiated by various times of releases. The

maximum likelihood ratio of all hypotheses for each cell is plotted

for various sensor configurations. Each hypothesis has an associ-

ated time of release and maximum likelihood release amount. The

real sensor measurements provided to the inference algorithm for the

four sensor case is plotted in the lower right-hand figure. For each

of the other sensor configurations, the measurements provided were

a subset of those provided in the four sensor case.

The diagrams give an illustration of the degree of localizability

achievable with different sensor configurations. In the one sensor

case, the uncertainty is approximately circular indicating that the lo-

cation of the release cannot be distinguished within a ring around

the sensor. The two sensor and four sensor cases provide progres-

sively better localization. As expected, two sensors have difficulty

distinguishing along a line while four sensors are able to localize to

a point. The degree of shading in the plots indicates the likelihood

ratio value and hence the detection probability.
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Fig. 3. Maximum likelihood ratio at every cell in region of interest

for 1,2, and 4 sensor configuration. The measurement sequence for

the 4 sensor configuration sequence is also shown.

4.3. Effect of unmodeled wind bias and variance

To analyze the effects of errors in the assumed known wind field,

data produced under various wind biases and variances was pro-

vided to the inference algorithm which still assumed a pure diffu-

sion model. The wind bias was always taken to be straight to the

right such that it tends to transport the release between the two right-

hand sensors in the four sensor configuration. The wind variance

was an additive spatially and temporally white Gaussian noise on

the known underlying mean wind field (pure diffusion, in this case).

We examine the trends for a material release of size 1e5.

Probability of detection is fairly robust against wind variance,

but drops off with increased wind bias because a strong enough bias

will push the cloud of material between the sensors before it has dis-

persed enough to be registered. Specifically, for wind biases greater

than 1.5 some of the 100 simulated releases were not detected. For

all simulated wind variance cases, 100% of the releases were de-

tected.

Figure 4 summarizes the localization performance for the four

and 16 sensor configurations in three cases: nominal, unmodeled

wind bias, and unmodeled wind variance. The plots indicate the x-

direction localization mean and error variance. In the nominal and

wind variance scenarios, this is nearly identical to the statistics in the
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y-direction because we are operating under a zero mean wind field.

In the wind bias scenario, this direction represents the principal axis

of the covariance (same as the wind direction). The first two bars in

each grouping indicate the estimates produced at the time of first de-

tection while the second two bars are estimates after the system has

accrued information until the detected hypothesis is ”almost” outside

the hypothesis window. We define ”almost” to be a fixed lag param-

eter, n, which enforces that we stop accruing information when the

window in which hypotheses of a release n time steps before the

time corresponding to the initial best hypothesis are still considered.

This is done because after the added time of gathering information, a

hypothesis at an earlier time step may be better than the initially de-

tected hypothesis. The main idea of this version of the algorithm is

to alarm at the time of first detection and then wait an allotted period

of time until producing localization results. The acceptable amount

of time to wait is application dependent. Thus, the results in Fig-

ure 4 are indicative of the bounds on localization performance. Not
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Fig. 4. Localization mean and error variance of 4 and 16 sensors

at time of first detection (∗ and o) and after accruing information

(� and �) for three values of release amount (top), unmodeled wind

variance (bottom left), and unmodeled wind bias (bottom right).

surprisingly, the trend indicates that larger release amounts can be

localized better and regardless of release amount, 16 sensors outper-

form four sensors. For smaller release amounts, 16 sensors do not

gain much by waiting to accrue additional information. However,

both sensor configurations achieve significantly better localization

in the case of larger release amounts. These results can be explained

by the fact that the signal to noise ratio at later time steps or further

from the release location is lower. Thus, the added information ac-

crued by the outlying sensors in the 16 sensor case for small releases

will be negligible.

Localization estimates for the unmodeled wind bias case indi-

cate that for smaller wind biases accruing information significantly

helps localization. However, for larger wind biases the 16 sensor

configuration inaccurately pinpoints the release to the edge of the

room. This is because the inner four sensors only measure a small

amount of the release as it passes through while the outer ring mea-

sure a much larger amount of material. The inference procedure

assumes pure diffusion, so the most likely case is that the release

was far from the inner four sensors. As a whole, these results high-

light the point that localization performance suffers more quickly

than detection performance when the wind field is mismatched to

the inference procedure.

By comparing the wind variance case with the corresponding

1e5 release amount of the nominal case, one can analyze the degra-

dation in localization performance caused by the model mismatch.

Performance degrades with increased unmodeled wind uncertainty.

In all cases, accruing more information provides better localization

results. As with the matched model, the 16 sensor configuration out-

performs the four sensor configuration. The disparity becomes less

pronounced in the high variance with accrual situation. Comparing

these results with those from an unmodeled wind bias, we see that

the trends for randomness on the wind field better mirror those of

the nominal matched case. This is because the disturbances on the

propagation of particle concentrations caused by noise on the wind

field are more similar to the type of errors modeled in the dynamic

equation than the effects caused by a bias on the wind field.

5. DISCUSSION

We have presented a Bayesian state estimation approach to detecting

and localizing a material release. Our approach allows for integra-

tion of measurements from multiple sensors over time. We have

demonstrated the utility of this formulation and characterized the

performance of a set of sensor configurations with regard to detec-

tion, time to detection and localization performance. We have also

investigated aspects of model mismatch due to incorrect wind field

assumptions. From the experiments conducted, we see that model

mismatch impacts localization performance more than detectability.

The formulation presented provides a framework for answering

questions about the interaction between release amount, release lo-

cation, sensor density, and sensor placement. The appropriateness

of this formulation for a given application depends on the validity of

the assumptions we have made, such as a known mean wind field and

abrupt releases of material. The linearity of a diffusion plus transport

dynamic model makes this framework suitable in many scenarios.

Our approach integrates sensor measurements at a centralized

processor. By arranging sensor nodes into groups, our approach pro-

vides the basic building blocks for a distributed processing configu-

ration. The issues of how this arrangement should be conducted are

a topic of future research. In addition, it is clear that knowing the

model parameters is a critical factor in these approaches. Methods

from machine learning may provide approaches to learning the un-

derlying model parameters so as to reduce sensitivity to mismatch.
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