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ABSTRACT
In some signal processing tasks involving complex-valued mul-
tichannel measurements, classical whitening approaches do
not completely remove the second-order statistical dependen-
cies of the data. This paper describes adaptive procedures for
estimating the strong uncorrelating transform for jointly diag-
onalizing the covariance and pseudo-covariance matrices of
multidimensional signals. Novel algorithms are derived that
extend and combine the power method and orthogonal itera-
tions with ordinary fixed and iterative whitening procedures.
Finally, we show how to combine our procedures with or-
thogonal PAST algorithms to perform subspace tracking and
source signal clustering based on non-circularity.

1. INTRODUCTION

For zero-mean � -dimensional signals � � � �
, the sample co-

variance matrix and pseudo-covariance matrices

�� � � � 	 
 ��
	


� � � � � � � � � � � �
and

�� � � � 	 
 ��
	


� � � � � � � � � � � �
(1)

where � � and � � denote Hermitian (complex) and ordinary
transpose operations, respectively, give complete descriptions
of the second-order statistical properties of the measurements.
The covariance matrix

�� � � � 	
is widely used in parameter es-

timation, subspace tracking, and data compression. Recently,
pseudo (co)variance has also been used in algorithms for car-
rier offset estimation in wireless communications [1], channel
equalization [2], and blind separation of complex-valued sig-
nal mixtures [3, 4]. A key property in these applications is that�� � � � 	 �
 �

due to the underlying problem structure, imply-
ing that the measurement statistics are complex non-circular.
For example, in subspace tracking of multidimensional sig-
nals impinging on an antenna array, some of the transmitted
signals may have zero energy in their imaginary components,
and the matrix

�� � � � 	
along with

�� � � � 	
can be used to charac-

terize the array response for these signals.
In this paper, we develop adaptive algorithms for estimat-

ing the strong-uncorrelating transform (SUT) � for jointly
diagonalizing and normalizing

�� � �
and

�� � �
, such that

� �� � � � � 
 �
and � �� � � � � 
 � �

(2)

where
�� � � � 	

is positive definite and
�

is a diagonal matrix
of circularity coefficients � � � � , �  � � � ! ! ! � � � satisfying" # � � # � $ # � for � % & . The SUT is defined in [3, 4] in the
context of independent component analysis and blind source
separation, and very few methods for computing it have been
described. In this paper, we extend classic techniques for
eigenvector estimation of Hermitian symmetric matrices to
computing the Takagi factorization of a complex symmetric
matrix needed for the SUT. We then illustrate the importance
of the SUT for subspace tracking tasks. In particular, we de-
rive an extension of the projection approximation subspace
tracking (PAST) algorithm in which the signal subspace is
further decomposed into smaller subspaces due to signal non-
circularity.

2. AN ITERATIVE PROCEDURE FOR FINDING THE
STRONG-UNCORRELATING TRANSFORM

As defined in [3, 4], the SUT for any
�� � �

and
�� � �

is

� 
 ' � ( �
(3)

where ( is any prewhitening transformation of the measure-
ments � � � �

such that

( � � � ( � 
 � �
(4)

and the unitary matrix
'

comes from the Takagi factorization
or symmetric SVD of the matrix

� 
 ( �� � � ( � 
 ' � ' � �
(5)

in which
�

contains the ordered circularity coefficients � � .
For ( , any prewhitening transform can be used, such as (i)
the inverse of the Cholesky factor of

�� � �
, (ii) the inverse

symmetric square root of
�� � �

computed from the eigenvalue
decomposition

�� � � 
 ) * ) � as ( 
 ) * + � , - ) � , and (iii)
the principal component whitening transformation

�� � � 

* + � , - ) � . Note that

�
in (5) is symmetric but not Hermi-

tian symmetric; hence, a normal (complex-valued) eigenvalue
decomposition of

�
will not yield

'
and

�
.

In linear algebra, the power method and orthogonal itera-
tions are classical procedures for finding one or more eigen-
vectors of a Hermitian symmetric complex matrix [5]. In this
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section, we extend these methods to computing one or more
columns of

�
in (5). For finding the first column � � of

�
,

consider a novel modification of the power method given by� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � �
�

(6)

where � is a non-zero real-valued shift parameter designed to
speed the convergence of the iteration. Eqn. (6) differs from
the classic power method, as (6) uses both � � � � � � and � � � � � � � .
The following theorem and corollary pertain to (6).

Theorem 1: If the 	 
 values are distinct and � � �
, (6)

causes � � � �
to converge exponentially to � � � . The rate of

convergence is upper bounded by� � 	 
 ���� � � 	 �� � 	 � ���� � ���� � � 	 
� � 	 � ���� 
 �
(7)

Corollary 1.1: The optimumvalue of � is � � � � � � 	 � � 	 
 � � �
,

in which case the rate is
� 	 � � 	 
 � � � � 	 � � 	 
 �

.

Proof: Consider (6) using the vector � � � � � � � � �
, for which�� � � � � �� � � � � � � � � �

(8)

The real and imaginary parts of the � th element of � �
are� � � � 
 � � � � � � 	 
 � � � � 
 � � � � and

� � � � 
 � � � � � � 	 
 � � � � 
 � � � � �
(9)

Considering the normalization step, the evolution of the
� � -

element real vector � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � is iden-
tical to the power method applied to the real-valued diago-
nal matrix � with diagonal entries � � � 	 � � � � 	 � � � � � � � �

	 � � � � 	 � � . Hence, � �
converges to � � � � � � � � � � , imply-

ing that � � � � � � � � . The rate is upper-bounded by the ratio
of the two largest magnitude eigenvalues of � , which leads
to (7). The optimum choice of � minimizes the maximum of
these ratios, which is achieved when � � � � � � �

.
Given (6), it is straightforward to develop a parallel imple-

mentation that extracts all of the columns of
�

. The method
extends the method of orthogonal iterations to the symmetric
SVD for complex symmetric matrices with distinct circularity
coefficients. Let

� � � � � � � � � � � � � � � �
denote the estimate of�

at iteration
�
, and consider the update

� � � � � � � � � � �� � � � � � � � � � �
(10)

where
� � � � �

denotes the QR decomposition of a matrix and� �
is upper-triangular. Given Theorem 1, several properties

of (10) can be stated:

1. If the � 	 
 � values are distinct,
� �

converges exponentially
to

� �
, where

�
is a diagonal matrix of � � entries.

2. The matrix
� �

converges exponentially to
� � � �

.
3. Convergence is guaranteed for any � � �

. Adaptive proce-
dures could be developed for computing individual shifts for
each column of

� �
, but for algorithm simplicity, we propose� � �� � �

(11)

3. ADAPTIVE ESTIMATION OF THE STRONG
UNCORRELATING TRANSFORM

The iterative technique in (10) is now used to define an adap-
tive procedure for estimating the SUT as

� � � � �� � � �
(12)

where both � �
and

� �
are adapted according to time-varying

estimates of
�� � � �  

and
� � � � � �� � � �  � � �

. Using two sepa-
rate matrices to represent � �

in (12) is both inconvenient and
computationally undesirable. For this reason, consider the sit-
uation in which either (a) � �

does not change with time, or
(b) � �

is adapted using an update of the form

� � � � � � � � ! � � �� � � � � � � � �� � � � � �  � � � � �
(13)

where the matrix function ! � " � # �  �
depends on the ma-

trices " and
#

and/or the vector  . Adaptive prewhitening
procedures are given at the end of this section.

Using (12), we obtain from (10) the relation

� � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � �
(14)

Next, we pre-multiply both sides of (14) by
� � �� � � � � �� � �

and use the fact that
� � � � is unitary to obtain

� � �� � � � � � � � � � � � �� � � � � � �� � � � � �
(15)

Define the orthogonal matrix $ � � � � �� � � � �
. Then, by com-

bining (13) and (15), an update expression for � �
is$ � � � �

qr � � � � � �� � � � � � �� � � � � � �
(16)

� � � $ �� � � � � � ! � � �� � � � � � � � �� � � � � �  � � � � �
(17)

where we have used � �� � � � � �� � � � �� � � � � �� � �
.

The updates in (16) and (17) are our main algorithm it-
erations. Eqn. (16) computes an orthogonal update matrix$ �

that pre-multiplies � � � � on the left in (17), the latter of
which is also post-multiplied by the update matrix function ! .
The function ! should be specified such that � � �� � � � � � ��
is close to or exactly equal to an identity matrix. Note that
no approximations were used in deriving (16)–(17), i.e., � �
exactly equals (12), where

� �
evolves according to (10) with� � � � % � � � � �� � � � � � � � � � .

Eqns. (16)–(17) require estimates
�� � � � �

and
�� � � � �

of the
covariance and pseudo-covariance of  � � �

. Time averaging of
the sequences  � � �  � � � �

and  � � �  � � � �
can be used to esti-

mate these matrices. Of particular interest are the exponentially-
windowed estimates generated by

�� � � � � � & �� � � � � � � � '  � � �  � � � �
(18)�� � � � � � & �� � � � � � � � '  � � �  � � � �
(19)

for
� ( & ! � and ' � �

, which are computationally-
attractive. For ' � � � &

, these estimates are unbiased.
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� � � � � � � � � � � � �� � � � � � 	� � � � � � �� � � � � 
� 	 � � � � � � �
�


 � � �
� � � � 	 � � � � � � � ��� 
 
 � � � � �� 
 
 � � � � � � � � � � � � � � �

� � � � � � � �� 
 
 � � � �� � �
� � � � �

qr � � � � � � �

� � � 
� � � 	� � � � � � � � � � � � � � � � 	 � � � �
Table 1: The adaptive SUT algorithm employing orthogonal
iterations.

As for the matrix function � , we are motivated by existing
prewhitening algorithms to choose specific forms. The choice

� � 	 � 
 � � � � �
� � � 
� 
 	 (20)

yields a fast-converging iteration that is related to a classic
procedure for vector orthogonalization [6]. Convergence of
this iteration to a prewhitening solution is at least quadratic if�� 
 
 � �

does not change with time; the value of � �
must be

scaled, however, to maintain stability. The choice

� � 	 � � � � � � � 
 � 	 � � � 	 � � 	 	 (21)

can be viewed as a stochastic implementation of (17) and (20)
with an adjustible step size 	 [7, 8]. Finally, the choice

� � 	 � � � � � � 
� � � � � � � � 	 	 �
(22)� � 


� 	 	 �
�


 � � �
� � � � 	 	 � � (23)

yields a modified Householder RLS algorithm[9, 10] in which
a

� � scaling is imparted on � �
. This algorithm has particu-

lar deterministic prewhitening properties.

Theorem 2: For an arbitrary pseudo-covariance matrix es-
timate

�� 
 
 � �
, the algorithm in (16)–(17) and (22)–(23) pro-

duces a sequence � �
that exactly satisfies � � �� 
 
 � � � 	� �

�
for the sequence of estimates

�� 
 
 � �
generated by (18).

Proof: The proof can be constructed using the Householder
RLS relations in [10] with the additional fact that � �

is uni-
tary such that � � � � � 
 
 � � � 	� � 	� � � � � 	� � �

if and
only if � � � 
 
 � � � 	� � �

.



Table 1 gives the proposed adaptive strong-uncorrelating
transform based on the method of orthogonal iterations. The
complexity of this procedure is

� � 
 � � � � � � � �
complex op-

erations at each time step. By comparison, the exact SUT in
[3] requires the eigenvalue decomposition of

�� 
 
 � �
which is

at least of � � 
 � � �
complexity [5], and the symmetric SVD

of
� �

using an iterative procedure with specialized numeric
code. Clearly, the adaptive SUT in Table 1 is much simpler to
implement in an on-line setting.
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Fig. 1: Evolutions of (a) � � � � � � � � and (b) � � � � � � � �
in the first simulation example.

4. SIMULATIONS

We now illustrate the performance of the proposed algorithms
via simulations, in which

� � � � � � � � � � � � � � � �
(24)

where the
� � � � �

matrix
�

has complex jointly-Gaussian
entries,

� � � �
contains realizations of zero-mean uncorrelated

complex jointly Gaussian non-circular random variables with� � � � � � � 	 � � � � � �
and � � � � � � � � � � � � � �

with � � � � � � � � � �
� � � � � � � � � � � 
 � � � � � � � � � � � � � � � � � � � 
 � , and � � � � � �

.
Because � � � � � � � � � � � � 
 and � � �� � � for all � �� �

, the
SUT of � � � �

yields � � � � �
if

� 
 
 � �
and

� 
 
 � �
are known

exactly. Both the adaptive SUT and an exact SUT as de-
scribed in [3] have been applied to 100 different realizations
of this data, where

� � 
 � � � � � 
 
 

, �  � � 
 � �

, and�� 
 
 � � � �� 
 
 � � � � � 
 �
. Shown in Fig. 1 are the evolutions of

� � � � � � � � ! � � ! � � � diag � ! � � ! � � � � � �"� � diag � ! � � ! � � � � � �" (25)

� � � � � � 
� � #$ % 
� ! � % 

" ! �
� & � " � � �

� � �� ' � ' % � & � " � � � � � & � " � � �
� � �� ' " ' % � & " � � � � () � 
 (26)

with ! � � � � �
, which measure the degree of pseudo-covar-

iance diagonality and the separation quality, respectively, of
� �

. The adaptive SUT gives nearly identical performance to
an exact SUT of the estimated

�� 
 
 � �
and

�� 
 
 � �
, respectively.

5. USING THE STRONG-UNCORRELATION
TRANSFORM IN SUBSPACE TRACKING

The goal of subspace tracking is to calculate an
� � � * �

, � +*
matrix ! whose rows span the � -dimensional principal or

minor subspace of � � # �
. For principal subspace tracking, we
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� � � � � � � � � � � � �� � � � � � � � � � � �� � � � � � �� � � � � 	 � � � � � � �� � � � � 	 �� � � � � � �� � � � � 
� � � � � � � � �
�


 � � �
� � � � � � � � � � � �

� � � � � � � � �
� � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � � � � � 
 � � � � �

� � � � � � � �
� � � � � � � � �


 � � � � � � � � � � � � � 
 � � � � � � � � 

�� � � � � � � �� � � � � � � � � � � � � � � � �

� � � 	 � � � �� � � � � 	 �� � �
� � � � �

qr � � � � � � �

	 � � 
	 � � � 
 	 � � � � � � � � � � � � � � � � � �
Table 1. The OPAST-SUT algorithm.

desire � � � � �
for � � � � � 
 � � � � � � � , whereas for minor

subspace tracking, we desire � � � � �
for � � � 
 � � � � � � � � � .

The rest of this paper focuses on the former problem.
Among the many principal subspace tracking algorithms,

the orthogonal PAST algorithms are a family of procedures
use an approximate least-squares subspace estimator embed-
ded within a Householder update to maintain exact unitarity
of � �

[11, 12]. All PAST algorithms calculate the Kalman
gain vector within the subspace for the update relations.

The strong-uncorrelating transform complements the or-
thogonal PAST algorithm family. In particular, [(16)–(17),
(22)–(23)] exactly represents

�� � �� � � � in 	 �� 	 �
, so it can re-

place the traditional Kalman gain update relationships within
PAST. A similar design was used in the combined OPAST
and kurtosis-based source separation procedure in [13]. Ta-
ble 1 lists the update equations for the proposed OPAST-SUT
adaptive procedure. The overall complexity of this technique
is

� � � � � � � � 
 � � � � 
 �
operations at each sample time.

Our OPAST-SUT algorithm is mathematically equivalent
yet simpler to implement than the disjoint combination of an
orthogonal PAST algorithm and an adaptive SUT procedure.
It possesses additional signal partitioning capabilities beyond
normal subspace tracking. Consider a multiantenna commu-
nication example where different modulation schemes may be
used adaptively depending on the link quality. The receiver
has six antennas, and a mixture of two BPSK signals and one
16-QAM signal is observed. The channel matrix is

� � � ��
� � � � � � � � � � � � � � � � 	 � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � 


� � � � � � � � � � � 	 � � � � 	 � � � � � � � � 

� � �

� � 
 � � � � � � � � � � � � � � � � � � � � � 

� � � � � � � � � � � � 
 � � � � � � � � 	 � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � �



� �
(27)

and � � � �
contains uncorrelated complex circular jointly-Gaussian
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Fig. 2: Signal outputs generated by the OPAST-SUT
algorithm indicating source clustering.

noise with power � � � � � � � � � 
 � � � � � 
 . The circularity co-
efficients for the three signals are � � � � � 
 � � 
 � � � 
 � 
 � � � .
A six-input, three-output combined OPAST-SUT algorithm
both estimates the principal subspace and partitions this sub-
space according to the circularity coefficient values, such that
the first two outputs in � � � �

contain mixtures of the BPSK
sources and the third output in � � � �

contains the one 16-QAM
source. Figure 2 shows the output signal constellations of
 � � � �

, 
 
 � � �
, and 
 
 � � �

for
� � � 
 � � 
 � � � � � � � � � � with the

OPAST-SUT algorithm applied to data from this model with
	 � � 
 � �

and
� � � � � �

. The first two outputs show (phase-
rotated) mixtures of the two real-valued BPSK sources, and
the last output contains the 16-QAM source.

6. CONCLUSIONS

In this paper, we have systematically derived adaptive proce-
dures for estimating the strongly-uncorrelating transform us-
ing modifications of classic iterations from eigenvalue anal-
ysis. The techniques are computationally- and numerically-
efficient. Finally, a novel OPAST-SUT algorithm is described
that clusters signal subspaces based on source non-circularity.
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