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ABSTRACT

In this paper, we investigate different variants of the recently
proposed cost-reference particle filters (CRPFs) and study their
application to the problem of tracking of a high-speed maneuvering
target in the two-dimensional space. CRPFs drop all probabilistic
assumptions required by conventional particle filters and, as a
consequence, lead to practically more robust algorithms. We
introduce some suitable and natural modifications of CRPFs in
order to increase their efficiency and reduce their computational
complexity. Computer simulations are provided to illustrate the
performance of the new alternatives.

1. INTRODUCTION

The online tracking of a maneuvering target is a highly nonlinear
and challenging problem that involves, at every time instant, the
estimation not only of the unknown state (composed of position,
velocity and acceleration of the target) in the dynamic model that
describes the evolution of the target, but also the underlying model
that accounts for the regime of movement [1]. This problem has been
recently addressed by using a new family of sequential Monte Carlo
(SMC) methods called cost reference particle filters (CRPFs) [2].

The CRPFs, unlike standard particle filters (SPFs) [3], aim at
the estimation of the system state from the available observations
without a priori knowledge of any probability density function [4].
The statistical reference is substituted by a user-defined cost function
that measures the quality of the state signal estimates according to
the available observations. The resulting techniques, present a more
robust performance than the one achieved by conventional particle
filters, whose theory is based on probabilistic assumptions.

In this paper, we present some variations of the original CRPFs
that result from, on one hand, the theoretical interpretation of
the new methodology as a generalization of the standard particle
filters (SPFs) and, on the other hand, the search for more efficient
and computationally less demanding algorithms. The proposed
algorithms are carefully designed to cope with the multiple models
involved in the maneuvering target tracking problem. The starting
point is the analytical relationship of CRPFs with SPFs. The
conditions for which a SPF becomes a special case of the CRPF are
discussed and lead to a first simplified version of the method. Other
issues like resampling and estimation strategies are also addressed
and new schemes are proposed to further simplify the algorithms in
their design and implementation.
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Awards CCR-0220011 and CCF-0515246 and the Office of Naval Research
under Award N00014-06-1-0012.

The remaining of this paper is organized as follows. The
problem formulation of tracking a maneuvering target moving
along the two-dimensional space is described in Section 2. The
fundamentals of the CRPFs’ family are briefly introduced in Section
3. We discuss the conditions that relate CRPFs and SPFs and
present some variants of the CRPFs in Sections 4 and 5, respectively.
Computer simulation results that illustrate the validity of the
proposed algorithms are presented in Section 6. Finally, Section 7 is
devoted to the conclusions.

2. PROBLEM FORMULATION

The system state consists of the target position, pt = [px,t, py,t]
�

(m), velocity, vt = [vx,t, vy,t]
� (m/s), and acceleration,

at = [ax,t, ay,t]
� (m/s2), in the xy-plane [5]. We collect

these magnitudes in a single state vector of the form xt =
[p�

t ,v�
t , a�

t ]� ∈ R
6 and represent the dynamic system as

xt = Amtxt−1 + Bmtumt,t mt = 1, 2, (1)

yt = h(xt) + wt. (2)

The state equation (1) is allowed to switch between two different
modes of operation, i.e., mt ∈ {1, 2}. The nearly constant velocity
model, mt = 1, is described by

A1 =

⎡
⎣ I2 TsI2 02

02 I2 02

02 02 02

⎤
⎦ , B1 =

⎡
⎣

1
2
T 2

s I2

TsI2

02

⎤
⎦

while the accelerating model, mt = 2, designed to track occasional
maneuvering motion is given by

A2 =

⎡
⎣ I2 TsI2

1
2
T 2

s I2

02 I2 TsI2

02 02 I2

⎤
⎦ , B2 =

⎡
⎣

1
6
T 3

s I2
1
2
T 2

s I2

TsI2

⎤
⎦

where Ts is the sampling period, and I2 and 02 represent the 2 × 2
identity matrix and zero matrix, respectively. Switching between
models occurs randomly, according to the transition probability
matrix

H =

[
h11 h12

h21 h22

]

where hij = p(mt = j|mt−1 = i) is the probability of the
system to switch from model i at time instant t − 1 to model j
at time t, i, j = 1, 2, and the initial model probabilities are set to
p(mt = 1) = p and p(mt = 2) = 1 − p. Finally, the state noise
umt,t ∈ R

2 is a zero-mean white Gaussian process used to model
small acceleration turbulence,

umt,t ∼ N (0, σ2
mt

I2), mt = 1, 2
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where the variances σ2
mt

depend on the model.
The observation function h(·) has four components. An emitter

on the moving target transmits a signal with initial power P0 through
a fading channel with attenuation coefficient α. The transmitted
signal power at three reference points and the relative angle between
the target and one of the references (which acts as a fusion center)
are measured, i.e.,

hj(xt) = 10 log10

(
P0

‖rj − pt‖α

)
j = 1, 2, 3

h4(xt) = ∠ (pt)

where rj = [rx,j ry,j ]
�, j = 1, 2, 3, denote the position of the

reference points, and ‖z‖ =
√

z�z is the norm of vector z. The
observation noise, wt, is also modeled as a Gaussian noise with
independent components, wj,t ∼ N (0, σ2

wj
).

The objective is the adaptive estimation of the target state x0:t

given the sequence of measurements y1:t.

3. COST REFERENCE PARTICLE FILTERING

In order to estimate the state of the system from the available
observations without use of any probabilistic assumptions about the
model (1)-(2), we define a real cost function

Ct = C(x0:t|y1:t, λ) = λC(x0:t−1|y1:t−1) + �C(xt|yt)

which measures the quality of the state sequence x0:t given the
sequence of observations, y1:t. A recursive structure is assumed
and the cost of a sequence at time t is calculated using the cost up to
time t − 1 weighted by a forgetting factor, λ, plus a cost increment,
�C(xt|yt), obtained from the state and observation vectors at time
t. An additional risk function given by

R(xt−1|yt) = �C (fx(xt−1)|yt) ,

represents a prediction or estimate of the cost increment, �C(xt|yt)
obtained before xt is actually propagated.

Risk and cost are the main concepts in the design of the CRPFs,
which proceed sequentially in a manner similar to the SPFs [3].
The essential structure of the algorithm is outlined in Table 1,
where we have included some changes with respect to the original
method in [4] to account for the multiple models existing in the
maneuvering target tracking problem [2]. Specifically, given M
particles at time t, 2M risks are evalued at time t + 1 (one for
each model and each particle), but only M trajectories survive the
resampling step1. Note that a monotonically decreasing function
µ(·) : R → [0, +∞] is necessary to accomplish both the resampling
and estimation steps (see Section 6 for the specific formulation
considered in the maneuvering target tracking problem). We will
see that several strategies can be used to avoid working with it, and
therefore reduce the complexity of the algorithms. More detailed
guidelines that assist the algorithm designer, as well as sufficient
conditions for the asymptotic convergence of the propagation step,
are described in [2, 4].

1Note that the trajectory estimates in step 3 are obtained by weighted
average over the two models. An alternative is to use estimates based on the
model that has maximum posterior probability or to simply state the estimates
based on each of the two models together with the posterior probabilities of
the models.

Initialization
For i = 1, ..., M

x
(i)
0 ∼ U(Ix0)

C(i)
0 = 0

σ
2,(i)
0 , this variance is not updated until t > 10

Recursive update
For t = 1 to T

1. Selection of the promising trajectories
For i = 1, ..., M

R(i,mt+1)
t+1 = λC(i)

t + R(x
(i)
t |yt+1, mt+1) mt+1 = 1, 2

π̂
(i,mt+1)
t+1 ∝ µ(R(i,mt+1)

t+1 )

Resample to obtain
{
x̂

(i)
t , Ĉ(i)

t , m
(i)
t+1

}M

i=1

2. Random propagation
For i = 1, ..., M

x
(i)
t+1 ∼ pt+1(xt+1|x̂(i)

t , m
(i)
t+1)

If t > 10, update the propagation variance
C(i)

t+1 = λĈ(i)
t + �Ct+1(x

(i)
t+1|yt+1)

3. State estimation
π̃

(i)
t+1 = µ(C(i)

t+1)

π
(i)
t+1 =

π̃
(i)
t+1∑M

j=1 π̃
(j)
t+1

xest
t+1 =

∑M
i=1 x

(i)
t+1π

(i)
t+1

Table 1. Multiple model CRPF

4. RELATIONSHIP BETWEEN THE CRPF AND THE SPF

As mentioned in the introduction, CRPFs do not use the usual
probabilistic assumptions common to SPFs regarding the knowledge
of the a priori probability density funtion (pdf) of the state signal,
p(x0), and the noise densities, p(umt,t) and p(wt). They also do
not use the information regarding the transition probability matrix
H needed for the multiple model system. CRFPs are indeed
a generalization of the SPFs and the conditions that relate both
families can be easily found. Specifically, if the recursive cost of
a CRPF is computed by

C(x
(i)
0:t|y1:t, λ) = λC(x

(i)
0:t−1|y1:t−1, λ) + �C(x

(i)
t |yt) (3)

and λ = 1, the conditions are:

(a) �C(x
(i)
t |yt) = − ln p(yt|x(i)

t ),

(b) the CRPF and the SPF use the same proposal pdf,
p(xt|xt−1), and

(c) the CRPF assigns weights to the streams of particles

according to w
(i)
0:t ∝ e−C(i)

0:t .

With minor additional adjustments of the CRPF, we claim that the
CRPF and the SPF will produce identical results. Thus, we can say
that the SPF that resamples at every time instant is a special case of
the CRPF.

The other extreme would be if we set λ = 0. In this case, the
corresponding SPF algorithm has to perform resampling at every
time instant (as would the CRPF algorithm), and

C(x
(i)
t |y1:t) = �C(x

(i)
t |yt). (4)
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CRPFλ=0 CRPFλ=0,nr CRPFmin
λ=0,nr

1. Select: 1. Select: 1. Select:
For i = 1, · · · , M, mt+1 = 1, 2 For i = 1, · · · , M, mt+1 = 1, 2 For i = 1, · · · , M, mt+1 = 1, 2

R(i,mt+1)
t+1 = R(x

(i)
t |yt+1, mt+1) R(i,mt+1)

t+1 = R(x
(i)
t |yt+1, mt+1) R(i,mt+1)

t+1 = R(x
(i)
t |yt+1, mt+1)

π̂
(i,mt+1)
t+1 ∝ µ(R(i,mt+1)

t+1 ) Sort in increasing order the R(i,mt+1)
t+1 Sort in increasing order the R(i,mt+1)

t+1

Resample according to π̂
(i,mt+1)
t+1 Replicate the M

N
trajectories Replicate the M

N
trajectories

2. Propagate: 2. Propagate: 2. Propagate:
For i = 1, · · · , M For i = 1, · · · , M For i = 1, · · · , M

x
(i)
t+1 ∼ pt+1(x|x̂(i)

t , m
(i)
t+1) x

(i)
t+1 ∼ pt+1(x|x̂(i)

t , m
(i)
t+1) x

(i)
t+1 ∼ pt+1(x|x̂(i)

t , m
(i)
t+1)

C(i)
t+1 = �Ct+1(x

(i)
t+1|yt+1) C(i)

t+1 = �Ct+1(x
(i)
t+1|yt+1) C(i)

t+1 = �Ct+1(x
(i)
t+1|yt+1)

3. Estimate: 3. Estimate: 3. Estimate:
π

(i)
t+1 ∝ µ(C(i)

t+1) i = 1, . . . , M π
(i)
t+1 ∝ µ(C(i)

t+1) i = 1, . . . , M xmin
t+1 = arg min{C(i)

t+1}
xmean

t+1 =
∑M

i=1 x
(i)
t+1π

(i)
t+1 xmean

t+1 =
∑M

i=1 x
(i)
t+1π

(i)
t+1

Fig. 1. Alternative implementations to the multiple model CRPF.

Note that λ = 0 not only affects the calculation of the costs but
also the risks. The CRPF and the SPF will yield identical results

if conditions (a) and (b) from above still hold, and w
(i)
t ∝ e−C(i)

t .
Again, we claim that SPF is a particular case of CRPF.

Since our objective it to simplify the algorithms, we study the
case λ = 0. Therefore, we update the costs using exclusively the
incremental costs, i.e., according to (4). This method will be denoted
as CRPFλ=0.

5. ALTERNATIVE CRPFS

In this section we discuss some alternatives in the implementation
of the CRPF in order to reduce its computational complexity
maintaining the same efficiency. As mentioned in Section 3, one of
the critical steps in the complexity of the algorithm outlined in Table
1 is the calculation of the function µ(·). Here we address solutions
that do not use function µ(·).

5.1. Avoidance of resampling

In standard particle filtering, resampling must always be applied
to avoid weight degeneracy, the only choice being the frequency
of its use [6, 7]. It may be applied after the processing of every
observation, periodically (with period greater than one), or when
necessary (where the necessity is determined by an appropriately
selected criterion). The last two options are of interest when the
particle filters are run on general purpose computers that implement
the particle filtering sequentially. However, resampling is a major
obstacle for efficient implementation of SPF in parallel VLSI
hardware devices, because it creates full data dependencies among
processing units [6]. Although some promising methods have
been recently proposed [6], parallelization of resampling algorithms
remains an open problem.

The selection step in CRPFs is much less restrictive than
resampling in conventional SPFs [4]. Specifically, while resampling
methods in SPFs must ensure that the probability distribution of the
resampled population is an unbiased and unweighted approximation
of the original distribution of the particles [8], selection in CRPFs is
only aimed at ensuring that the particles are close to the locations that
produce cost function minima. This issue has already been exploited

to propose a local resampling scheme suitable for a straightforward
implementation using parallel VLSI hardware [4].

Here we propose an alternative approach where the proposed
CRPFλ=0 scheme is modified to avoid resampling, which is
replaced by simple ordering of the obtained risks in step 1 of the
algorithm and replicating the corresponding M

N
(where N can be

2, 3, · · · ) particles with lowest risks. Therefore, in the first step
we avoid both the calculation of µ(·) and the resampling procedure.
This method will be denoted by CRPFλ=0,nr .

5.2. Different estimation procedures

According to Table 1, the estimation step in the CRPF would
require the calculation of a probability mass function (pmf) µ(·).
The purpose of this pmf is to somehow normalize the obtained
risks. In order to avoid this operation, we modify the previously
introduced CRPFλ=0,nr by choosing as estimate of the state the
particle with minimum cost. The resulting algorithm is symbolized
by CRPF min

λ=0,nr .
A summary of all the proposed algorithms is shown in Figure 1.

6. COMPUTER SIMULATIONS

In this section, we present simulation results that illustrate the
performance of the various tracking algorithms discussed in the
previous sections. In our experiment, the target started from an
unknown position close to [0, 0], and evolved according to the
motion equation (1) for 10 minutes with sampling period Ts = 5
seconds. The state noise variances were set to σ2

1 = 0.1 and
σ2

2 = 0.01 and the observation noise components were modeled
as w1,t ∼ N (0, 10), w2,t ∼ N (0, 10), w3,t ∼ N (0, 10),
and w4,t ∼ N (0, 1). The transition probability matrix, used for
switching between models in (1), was

H =

[
0.9 0.1
0.2 0.8

]
,

with initial model probabilities p(1) = 0.9 and p(2) = 0.1.
The cost increment and risk functions used in the
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implementation of the CRPFs were

�C(xt|yt) = ‖yt − h(xt)‖2

R(x
(i)
t |yt+1, mt+1) = ‖yt+1 − h(Amt+1x

(i)
t )‖2, mt+1 = 1, 2;

and the function µ in the selection step2, if used, was defined as

µ(R(i,mt+1)
t+1 ) =

1(
R(i,mt+1)

t+1 − mink

{
R(k,mt+1)

t+1

}
+ δ

)β

with δ = 1
10

√
var(R(i,mt+1)

t+1 ) and β = 2. For the original CRPF,
the forgetting factor, λ was set to 0.95. The propagation mechanism
was a Gaussian density of the form

x
(i)
t+1 ∼ N

(
A

m
(i)
t+1

x̂
(i)
t , σ

2,(i)
t B

m
(i)
t+1

B�
m

(i)
t+1

)
,

where the variance, σ
2,(i)
t , was adaptively computed as

σ
2,(i)
t =

t − 1

t
σ

2,(i)
t−1 +

1

tLu

∥∥∥∥B�
m

(i)
t

(
x

(i)
t − A

m
(i)
t

x̂
(i)
t−1

)
B(m

(i)
t )

∥∥∥∥
2

with initial value σ
2,(i)
0 = 0.5.

For comparison purposes, we also implemented the multiple-
model SPF [1], which used the same model propagation scheme as
the CRPFs. All the particle filters ran using M = 1000 particles;
the CRPFλ=0,nr was run with two different values to discriminate
the particles, N = 2 and N = 4.

The performance of the algorithms was compared by means of
the percentage of track loss. At a given simulation run, a track
loss was confirmed when the root-mean-square (RMS) position error
exceeded a threshold γmax within at least 10 consecutive sampling
periods. The RMS position error was computed according to

RMSt =
√

(xest
1,t − x1,t)2 + (xest

2,t − x2,t)2

where [x1,t x2,t]
� was the true position of the target at time t in

that run, and [xest
1,t xest

2,t ]� was the corresponding estimate obtained
by the filter. The percentages were calculated averaging over 500
independent simulation trials.

Figure 2 shows the track loss of the algorithms with respect to
different values of the threshold γmax. We can see that the proposed
CRPFs work similarly as the SPF. Note that the generation of the
particles was done according to the probabilistic models used by
the SPF. If there were discrepancies between the model assumptions
of the state/measured data and the true models, the differences in
performance in favor of the CRPF could have been significant [2, 4].

Finally, Figure 3 depicts the execution time of the compared
algorithms. It can be seen that the CRPF without resampling is faster
than the SPF and the original CRPF by five times.

7. CONCLUSIONS

We have investigated several modifications to the originally
presented cost-reference particle filters (CRPFs) and we have
applied them to the problem of tracking a maneuvering target
in the two-dimensional space. The proposed variations avoid
the resampling step (bottleneck in standard particle filtering) and
the use of the monotonically decreasing function µ(·). As a
result, computationally less demanding algorithms are obtained with
similar accuracy.

2An analogous formulation of µ(C(i)
t ) was used.
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