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ABSTRACT

It is well known that sensor location uncertainty can seriously dete-
riorate the source location accuracy. In this paper, we provide the
analysis of how much degradation the source location accuracy is
expected to be with respect to the amount of sensor location error.
We first derive the source location MSE when the estimator assumes
no sensor location error but in fact there is. Then, the CRLB is eval-
uated and compared with the one without sensor location error. The
analytical results allow us to decide whether a new algorithm to ac-
count for the sensor location error is necessary to improve the source
location accuracy.

1. INTRODUCTION

Source localization has been one of the important problems in a vari-
ety of fields ranging from radar, sonar, radio astronomy, and seismol-
ogy to oceanography [1]. Considerable attention has been received
for this problem and many different estimation algorithms have been
proposed.

Regardless of the localization algorithms used, source localiza-
tion accuracy can be seriously degraded by the uncertainty in sensor
locations [2, 3]. For the past few decades, several authors have pro-
posed better location solutions when the receiving sensors have lo-
cation errors [2–6]. Rockah and Schultheiss [2,3] improve the DOA
estimation accuracy in the presence of sensor location uncertainty if
one sensor location and the direction to a second sensor are known.
In [4], Lo and Marple derived a calibration technique that requires
the knowledge of directions of two calibrating sources. Ng et al. [5]
approximate the true array steering vector from the measurement by
the first order Taylor-series expansion, and then estimate the source
DOA by the MUSIC algorithm. In [6], a closed-form solution was
proposed that requires only 2 least-squares (LS) minimization steps
to estimate the source location in the presence of sensor position er-
rors.

There are, however, very few studies on the deterioration in the
source localization accuracy due to the erroneous sensor locations.
This paper provides the analysis of how much degradation the source
location accuracy is expected to be with respect to the amount of sen-
sor location errors. This paper derives the source location MSE when
an algorithm assumes perfect knowledge of the sensor locations but
in fact they have errors. The CRLB is also evaluated and compared
with the one without sensor location error. Then the difference in the
MSE and the CRLB in the presence of sensor location errors will be
compared to see whether a new method that takes the sensor location
errors into account is necessary to improve accuracy.

The paper is organized as follows. Section 2 provides the loca-
tion scenario and introduces the symbols used. The MSE and CRLB
analysis in the presence of sensor location errors are derived in Sec-

tion 3. Section 4 presents simulation results to support the analysis,
and Section 5 is the conclusions.

2. LOCATION SCENARIO

Let us consider the problem of locating a moving source at posi-
tion uo = [xo, yo, zo]T and velocity u̇o = [ẋo, ẏo, żo]T using an
array of M moving sensors through TDOA and FDOA measure-
ments. We shall denote so

i = [xo
i , y

o
i , zo

i ]T and ṡo
i = [ẋo

i , ẏ
o
i , żo

i ]T ,
i = 1, 2, . . . , M as the true sensor positions and velocities for the
sensors during measurements and they are not known. The avail-
able sensor positions and velocities are noisy and are represented as
si = so

i + ∆si and ṡi = ṡo
i + ∆ṡi, where ∆si and ∆ṡi are posi-

tion and velocity errors for sensor i and are assumed to be zero mean
Gaussian distributed with covariance matrix E[ββT ] = Qβ , where
β = [∆sT

1 , . . . , ∆sT
M , ∆ṡT

1 , . . . , ∆ṡM ]T .
The TDOA ti1 between sensor pair i and 1 is related to the target

ranges to the two sensors as

ro
i1 = cto

i1 = ro
i − ro

1 , i = 2, 3, . . . , M (1)

where c is the signal propagation speed and

ro
i = ‖uo − so

i ‖ =
√

(uo − so
i )

T (uo − so
i ). (2)

The time derivative of (1) gives the FDOA(range rate):

ṙo
i1 = ṙo

i − ṙo
1 , i = 2, 3, . . . , M (3)

where from (2),

ṙo
i =

(uo − so
i )

T (u̇o − ṡo
i )

ro
i

. (4)

The TDOA and FDOA measurements are noisy so that the measure-
ment vectors are denoted as r = [r21, r31, . . . , rM1]

T = [ro
21, r

o
31,

. . . , ro
M1]

T +n = ro+n and ṙ = [ṙ21, ṙ31, . . . , ṙM1]
T = [ṙo

21, ṙ
o
31,

. . . , ṙo
M1]

T + ṅ = ṙo + ṅ.
We collect the TDOA and FDOA measurement vectors as p =

[rT , ṙT ]T , and the TDOA and FDOA error vectors as α = [nT , ṅT ]T .
In this study, α is assumed to be a zero mean Gaussian vector with
covariance matrix E[ααT ] = Qα. The measurement noise α is
assumed to be independent of the sensor location noise β for ease of
illustration.

3. MSE AND CRLB

In this section, we will first derive the source location MSE assuming
that there is no sensor location error, but in fact sensor location error
is present. Second, the CRLB is evaluated and compared with the
one when the sensor location error is absent.
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3.1. Source Location MSE without accounting for Sensor Loca-
tion Error

When an estimation algorithm finds the source location assuming
there is no sensor error but in fact there is, we are interested in de-
termining the increase in the source location MSE. Here we derive
the MSE based on the Taylor-series linearization approach. The ana-
lytical results are valid for any estimation algorithm approaching the
CRLB in the absence of sensor location error.

First we define the following quantities,

fi1(θ) = ‖u − si‖ − ‖u − s1‖

ḟi1(θ) =
(u̇ − ṡi)

T (u − si)

‖u − si‖ − (u̇ − ṡ1)
T (u − s1)

‖u − s1‖ ,
(5)

note that si and ṡi are the noisy sensor positions and velocities known
to the estimator. Let θ = [ uT u̇T ]T be the source location pa-
rameter vector. Applying Taylor-series expansion of f(θ) around
certain θo gives

f(θ) � f(θo) + F(θo)(θ − θo), (6)

where f(θ) = [f21(θ), f31(θ), . . . , fM1(θ), ḟ21(θ), ḟ31(θ), . . . ,

ḟM1(θ)]T , F(θo) = ∂f(θ)
∂θ

∣∣∣
θo

=
[

∂f
∂u

∂f
∂u̇

]∣∣
θo

and the 2nd

and higher order terms are ignored. Subtracting (6) from the mea-
surement vector p gives the measurement error,

e = p − f(θ) = p − f(θo) − F(θo)(θ − θo).

We find θ by minimizing

ξ = eT Q−1
α e,

where Q−1
α is the weighting matrix. The choice of it will be dis-

cussed at the end of this section. Taking derivative with respect to θ
and setting the gradient to zero yields the solution

θ = θo +
[
F(θo)

T Q−1
α F(θo)

]−1

F(θo)
T Q−1

α (p − f(θo)) .

If we choose θo to be the true solution θo, then the estimation error
of the emitter is

θ − θo =
[
F(θo)T Q−1

α F(θo)
]−1

F(θo)T Q−1
α (p − f(θo)) .

(7)
We now simplify p − f(θo) further in order to obtain the MSE.

The elements of (p − f(θo)) are ri1 − fi1(θ
o) and ṙi1 − ḟi1(θ

o),
i = 2, 3, . . . , M . First we will simplify ri1 − fi1(θ

o) by using (2)
and (5),

ri1 − fi1(θ
o) = ni1 + ro

i1 − fi1(θ
o)

= ni1 + ‖uo − so
i ‖ − ‖uo − so

1‖
− (‖uo − si‖ − ‖uo − s1‖) .

(8)

Putting si = so
i + ∆si and applying Taylor-series expansion up to

the first order term gives,

‖uo − si‖ � ‖uo − so
i ‖ − aT

i ∆si,

where ai =
(uo−so

i )
‖uo−so

i ‖
and hence

ri1 − fi1(θ
o) = ni1 + aT

i ∆si − aT
1 ∆s1. (9)

We can express ṙi1 − ḟi1(θ
o) by using (2), (4) and (5),

ṙi1 − ḟi1(θ
o) = ṅi1 + ṙo

i1 − ḟi1(θ
o)

= ṅi1 +
(uo − so

i )
T (u̇o − ṡo

i )

‖uo − so
i ‖

− (uo − so
1)

T (u̇o − ṡo
1)

‖uo − so
1‖

−
(

(uo − si)
T (u̇o − ṡi)

‖uo − si‖ − (uo − s1)
T (u̇o − ṡ1)

‖uo − s1‖
)

.

(10)

Applying Taylor-series expansion and simplifying, yields

(uo − si)
T (u̇o − ṡi)

‖uo − si‖ � (uo − so
i )

T (u̇o − ṡo
i )

‖uo − so
i ‖

− aT
i ∆ṡi − bT

i ∆si,

where ai is defined before (9) and bi =
(u̇o−ṡo

i )

‖uo−so
i ‖

− (uo−so
i )ṙo

i
‖uo−so

i ‖2 .

Hence

ṙi1 − ḟi1(θ
o) = ṅi1 + aT

i ∆ṡi − aT
1 ∆ṡ1 + bT

i ∆si − bT
1 ∆s1. (11)

As a result, from (9) and (11),

p − f(θo) = α − Pβ, (12)

and

P =

[
[P11](M−1)×(3M) [O](M−1)×(3M)

[P21](M−1)×(3M) [P11](M−1)×(3M)

]
.

The ith row, i = 1, 2, . . . , M − 1 of P11 and P21 are

P11(i, :) =
[

aT
1 01×3(i−1) −aT

i+1 01×3(M−i−1)

]
P21(i, :) =

[
bT

1 01×3(i−1) −bT
i+1 01×3(M−i−1)

]
,

where ai and bi are defined before (9) and (11) respectively.
Putting (12) into (7), and under the assumption that both α and

β are zero mean, the expectation of (7) gives,

E[θ−θo] =
[
F(θo)T Q−1

α F(θo)
]−1

F(θo)T Q−1
α E [α − Pβ] = 0

which shows that the estimator θ is unbiased up to linear approxima-
tion, although we did not account for the sensor noise in estimating
the emitter location and velocity.

Multiplying (7) with its transpose, taking expectation and using
(12) forms

MSE(θ) =
(
F(θo)T Q−1

α F(θo)
)−1

+(
F(θo)T Q−1

α F(θo)
)−1

F(θo)T Q−1
α P

QβPT Q−1
α F(θo)

(
F(θo)T Q−1

α F(θo)
)−1

.

(13)

Let us now choose Qα as the covariance matrix of α and consider
Gaussian noise. Then that the 1st term in (13) is the CRLB in the
absence of sensor location noise [7]. The second term therefore rep-
resents the additional error resulted from sensor location inaccuracy.
The trace of the second term is the increase in MSE.
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3.2. CRLB

The CRLB is the lowest possible variance that an unbiased linear
estimator can achieve. It is given by the inverse of the Fisher infor-
mation matrix J defined as [8],

J = E

[(
∂ln g(v; φ)

∂φ

)T (
∂ln g(v; φ)

∂φ

)]
. (14)

where v = [pT ,qT ]T is the data vector and φ = [θT ,qT ]T is the
unknown vector with θ = [uT , u̇T ]T and q = [sT , ṡT ]T . Since
the receiver locations are unknown, they act as auxiliary parame-
ters when deriving the CRLB of the source location. g(v; φ) is the
probability density function of v that is parameterized on the vec-
tor φ. We assume that TDOA and FDOA noise and sensor loca-
tion noise are independent and Gaussian distributed with known co-
variance matrices Qα and Qβ respectively. Therefore we can write
g(v; φ) = g(p; φ)g(q; φ). Normally Qα and Qβ are obtained by
using of a source of known location and the amounts of perturbations
in the receiver locations, and they are not known exactly in practice.
We assume they are known here for ease of derivation. After taking
natural log and performing differentiation, the CRLB is,

CRLB(φ) = J−1 = −
[

X Y
YT Z

]−1

(15)

The partial derivative of the upper left corner is

X = −E

[
∂2 ln g(v; φ)

∂θ∂θT

]
=

(
∂p

∂θ

)T

Q−1
α

(
∂p

∂θ

)
, (16)

and
∂p

∂θ
=

[
∂p

∂u
,
∂p

∂u̇

]
,

where ∂p
∂u

= [a2 − a1, . . . , aM − a1,b2 − b1, . . . ,bM − b1]
T ,

∂p
∂u̇

=
[
O3×(M−1),a2 − a1, . . . , aM − a1

]T
, ai =

(uo−so
i )

‖uo−so
i ‖

and

bi =
(u̇o−ṡo

i )

‖uo−so
i ‖

− (uo−so
i )ṙo

i
‖uo−so

i ‖2 .

The partial derivative of the lower right corner is,

Z = −E

[
∂2 ln g(v; φ)

∂q∂qT

]
=

(
∂p

∂q

)T

Q−1
α

(
∂p

∂q

)
+ Qβ

−1. (17)

and
∂p

∂q
=

[
∂p

∂s
,
∂p

∂ṡ

]
,

where ∂p
∂s

=

[
[P11](M−1)×(3M)

[P21](M−1)×(3M)

]
, ∂p

∂ṡ
=

[
[O](M−1)×(3M)

[P11](M−1)×(3M)

]
,

and P11 and P21 are defined below (12).
The partial derivative of the upper right corner is,

Y = −E

[
∂2 ln g(v; φ)

∂θ∂qT

]
=

(
∂p

∂θ

)T

Q−1
α

(
∂p

∂q

)
, (18)

Putting (16),(17) and (18) into (15) and invoking the partitioned
matrix inversion formula [9] gives

CRLB(θ) = X−1 + X−1Y(Z−YT X−1Y)−1YT X−1. (19)

Note that X−1 is the CRLB of θ when there is no sensor position
and velocity noise [7]. Hence the second term in (19) represents the
increase in CRLB in the presence of sensor location error. The trace
of (19) is the minimum possible source location MSE that any linear
unbiased estimator can achieve.

Table 1. Positions and Velocities of Sensors. The unit of the position
is meter and that of the velocity is m/s.

sensor no. i xi yi zi ẋi ẏi żi

1 -591 -650 -493 30 -20 20
2 90 444 562 -30 10 20
3 590 860 -843 10 -20 10
4 -750 -515 191 10 20 30
5 35 222 -150 -20 10 10
6 -260 180 340 20 -10 10

4. SIMULATIONS

In this section, we will provide the simulation results to support the
theoretical development in the previous section. The sensor posi-
tions and velocities used for simulation are shown in Table I. The
TDOA noise is Gaussian with power σ2

t = 10−4/c2 and the FDOA

noise is also Gaussian with power σ2
f = 10−5/c2. Qα is

[
Rt O
OT Rf

]
,

where Rt is a (M − 1)× (M − 1) matrix with c2σ2
t in the diagonal

and 0.5c2σ2
t in all other elements [7], and Rf = Rtσ

2
f/σ2

t . Qβ is[
Rs O

OT Ṙs

]
, where Rs = σ2

sI3M×3M , Ṙs = σ̇s
2I3M×3M , and

σ̇s
2 = 0.5σs

2.
The emitter is located at u = [600, 650, 550]T m and has a ve-

locity of u̇ = [−20, 15, 40]T m/s. We shall examine the location
accuracy as σ2

s varies. Fig. 1 plots the trace of the upper left 3 × 3
submatrix of (13) which is the source position MSE, and the trace of
the lower 3× 3 submatrix of (13) which is the source velocity MSE.
The traces of CRLB(u), CRLB(u̇) with the sensor location errors
as obtained from (19) and those without sensor location noise [7] are
also shown for comparison. The CRLB deviates farther and farther
away from the case without sensor location error as σs

2 increases.
Even at a very small sensor error power σs

2 = 10−4m2, the in-
crease in CRLB for position u is 5.16dB and that for velocity u̇ is
10.33dB. The MSE performance is clearly worse than the CRLB,
when the sensor location error is not taken into account in a location
algorithm.

Fig. 2 is the results for the same near-field source but with
different noise powers at different sensor locations, where Rs =
σ2

sdiag[1, 1, 1, 2, 2, 2, 10, 10, 10, 4, 4, 4, 20, 20, 20, 3, 3, 3] and Ṙs

= 0.5Rs. The results are consistent with those in Fig. 1. There is,
however, even bigger difference between the MSE without taking lo-
cation error into account and the CRLB. If the sensor location noise
power σ2

s is bigger than 10−4m2, the difference between the two is
about 4dB for position and 3dB for velocity.

The performance of a far-field source at u = [2000, 2500, 3000]T

m and u̇ = [−20, 15, 40]T m/s is shown in Fig. 3, where the sen-
sors have different location error as those in Fig. 2. The increase in
CRLB in the presence of sensor errors is much more dramatic in a
far-field source than a near-field source. The difference between the
MSE and the CRLB with sensor location errors also becomes bigger
as the source is farther away from the sensors. The increase in error
is about 5dB for position and 4dB for velocity when σ2

s is bigger
than 10−4m2.

Although only the theoretical MSEs are shown in the figure, we
have verified the MSE formula (13) with the location algorithm [7]
as well as the Taylor series iterative method.

The simulation results provides two observations. First, the CRLB
is very sensitive to the sensor location error. Even a very small sensor
location error can lead to a very big increase in CRLB with respect to
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Fig. 1. Comparison of the CRLBs and the source location MSE
when assuming no sensor location noise, near-field moving source
and equal sensor location noise power.

−60 −50 −40 −30 −20 −10 0 10
−30

−20

−10

0

10

20

30

40

l0log(σ
s
2(m2))

1
0
lo

g
(p

o
si

tio
n
 M

S
E

(m
)2

)

−60 −50 −40 −30 −20 −10 0 10
−40

−20

0

20

40

l0log(σ
s
2(m2))

1
0
lo

g
(v

e
lo

ci
ty

 M
S

E
(m

/s
)2

) theretical MSE assuming no receiver error
CRLB without receiver error
CRLB with receiver location error

theretical MSE assuming no receiver error
CRLB without receiver error
CRLB with receiver location error

Fig. 2. Comparison of the CRLBs and the source location MSE
when assuming no sensor location noise, near-field moving source
and unequal sensor location noise power.

the case of no sensor location error. The increase will become larger
if the source is farther away from the sensors. Second, the MSE that
ignores the sensor location errors has significant difference with the
CRLB, especially when the noise power in the sensor locations are
not equal. Consequently, an estimation algorithm should take the
sensor location error into account in order to improve accuracy.

5. CONCLUSIONS

We have derived analytically the increase in location MSE when an
algorithm assumes the sensor locations are accurate but in fact have
errors, and the increase in CRLB due to random and Gaussian sen-
sor location error. The analytical results provide us some guidance
on whether a new algorithm that accounts for the sensor location
error is necessary to improve performance under different location
scenarios.
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Fig. 3. Comparison of the CRLBs and the source location MSE
when assuming no sensor location noise, far-field moving source and
unequal sensor location noise power.
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