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ABSTRACT

Mobile location using Time Of Arrival (TOA), Time Difference
Of Arrival (TDOA) or Angle Of Arrival (AOA) measurements
has received considerable attention over the last years. Sev-
eral closed-form algorithms have been presented for the TOA
and TDOA case based on approximations of the Maximum-
Likelihood (ML) estimator. In the case of AOA measurements,
only ad-hoc estimators have been presented in order to avoid
the classical linearization solution that needs an initial guess.
This paper presents an approximation of the ML position esti-
mator based on AOA measurements applying the Divide-And-
Conquer approach dividing the ML estimation in smaller prob-
lems each one with a closed-form solution. Numerical simula-
tions show that the proposed algorithm outperforms the previ-
ous contributions and presents a generic way to combine AOA
and TDOA measurements.

1. INTRODUCTION

A problem of growing importance in mobile radio systems is
finding the position of mobile terminals. This need is moti-
vated not only by the mandatory requirements imposed by the
US FCC for emergency calls but also by the potential market
related to location-based applications. Recently, several publi-
cations have provided methods to estimate the mobile position
using measurements of different nature, i.e., Time of Arrival
(TOA), Time-Difference-Of-Arrival (TDOA), Signal Strength
(SS) and Angle of Arrival (AOA). For an overview of the ex-
isting techniques, we refer the reader to [1] and [2] and refer-
ences therein. This paper focuses on AOA-based positioning
methods, combined with TDOA measurements as an option, to
estimate the mobile position. Since wireless 3G systems and
beyond already include an antenna array at the Node B, we as-
sume the Base Station (BS) can measure the AOA of the incom-
ing signal. A relevant feature of AOA-based positioning meth-
ods is that, in a 2-dimensional problem, they require only two
AOA measurements to estimate the mobile position, whereas
the other methods need at least three. However, the position ac-
curacy of AOA-based positioning methods decreases with the
distance between the mobile and the BS. Therefore, a good per-
formance of AOA-based methods is expected when the mobile
is located near the BS. The ML estimation of the position fol-
lows a non-linear relationship between the AOA measurements
and the mobile position. The classical solution to this problem
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was presented in [3] where a linearization of the non-linear re-
lation is proposed based on the first order Taylor approxima-
tion. This technique requires an initial position estimate and
the solution is obtained in an iterative fashion. The procedure
is valid for homogeneous and hybrid methods based on TOAs,
TDOAs, SSs and AOAs measurements. However, the conver-
gence of this technique is not guaranteed and the final accuracy
of the position estimate is determined by the initial position.
As an alternative to the linearized ML estimator, non-optimal
closed-formmethods have been proposed. In [4], a closed-form
position estimate method with AOA measurements is provided
based on the Least-Squares principle. This method proved to be
useful providing an initial position estimation for the linearized
iterative ML estimator. This paper presents a new algorithm to
estimate the mobile position based only on AOA measurements
or based on AOAs combined with TDOA measurements. The
proposed algorithm is based on the divide and conquer princi-
ple and is an extension of the closed-form estimator presented
in [5] for TDOA measurements.

2. SIGNAL MODEL AND PREVIOUS APPROACHES

Let us assume a scenario where N BSs can measure N AOA
measurements of a single mobile terminal. These N measure-
ments denoted by θn for n = [1, N ] are:

θn = fn (z) + wn (1)

where z =
[

x y
]T

is the unknown position of the mobile
and wn is a zero-mean uncorrelated Gaussian noise term with
known variance, i.e. E[wnwn′ ] = σ2

nδn−n′ . The non-linear
relationship between the AOA measurements and the mobile
position fn (z) can be expressed as:

fn (z) = arctan

(
y − yn

x − xn

)
(2)

where zn =
[

xn yn

]T
is the known position of the n-th

BS. Stacking the N AOA measurements of (1) in a vector, we
have:

θ = f (z) + w (3)

where θ =
[

θ1 . . . θN

]T
, w =

[
w1 . . . wN

]T
and

f (z) =
[

f1 (z) . . . fN (z)
]T

. From (3) and taking into
account that w is a zero-mean Gaussian noise vector, the ML
estimator of the position can be expressed as:

ẑML = argmin
z

φAOA
ML (z) (4)
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where

φAOA
ML (z) = (θ − f (z))

T
R−1 (θ − f (z)) (5)

and R = E
[
wwT

]
= diag

(
σ2

1 . . . σ2
N

)
. The classical

solution to this minimization problem consists in linearizing
the non-linear function f (z) by expanding it in a Taylor serie
around a reference point denoted by z0 as follows:

f (z) ≈ f (z0) + G (z0) (z − z0) (6)

where G (z) is the Jacobian matrix obtained as:

G (z) = ∇zf (z) =

⎡⎢⎣ g1 (z)
T

...
gN (z)T

⎤⎥⎦ (7)

and

gn (z) =
1

||z − zn| |

[
− sin fn (z)
cos fn (z)

]
(8)

Considering (6), the minimization shown in (4) has a closed-
form solution, also known as Torrieri method [3], as:

ẑML ≈ z0+
(
G (z0)

T
R−1G (z0)

)
−1

G (z0)
T

R−1 (θ − f (z0))

One of the major drawbacks of this solution is the requirement
of an initial guess z0. As it will be shown in the simulations
section, the performance of this algorithm is very sensitive to
the accuracy of this initial guess. The main advantage is that
this algorithm can be implemented iteratively using new AOA
measurements at each iteration. Indeed, this leads to an imple-
mentation of the classical Extended Kalman Filter.

In [4], a closed-formposition estimator that solves the prob-
lem of the initial guess was proposed. This approach is the
Least Squares (LS) solution of the signal model presented in
(3) in the absence of noise. Taking (1) without the noise terms,
we have:

tan θn =
sin θn

cos θn

=
y − yn

x − xn

(9)

Rearranging the previous equations and stacking the N equa-
tions corresponding to the N AOA measurements, we obtain
the following linear system:

H (θ) z = b (θ) (10)

where

H (θ) =

⎡⎢⎣ − sin θ1 cos θ1

...
...

− sin θN cos θN

⎤⎥⎦ (11)

b (θ) =

⎡⎢⎣ −x1 sin θ1 + y1 cos θ1

...
−xN sin θN + yN cos θN

⎤⎥⎦ (12)

Since the measurement noise term w of (3) affects both the
model matrix H (θ) and the vector b (θ), it is not clear how to
find an estimate of z. The authors in [4] proposed the following
position estimate based on the LS technique:

ẑ =
(
H (θ)

T
H (θ)

)
−1

H (θ)
T

b (θ) = H (θ)
#

b (θ) (13)

Although this estimator does not come from the ML principle,
the performance is comparable with that of the Torrieri algo-
rithm. One important drawback of this approach is that it is
difficult to include information about the variance of the initial
AOA measurements since the errors affect the matrix H (θ)
and the vector b (θ) in a non-linear way.

3. DIVIDE-AND-CONQUER AOA-BASED
ALGORITHM

In this section we present a closed-form algorithm to the min-
imization problem shown in (4). The idea here is to apply the
divide and conquer approach presented in [5] to the location
problem using AOA measurements. Assuming that N is mul-
tiple of two (see [5] for a straightforward extension to an odd
number of measurements), let us divide the incoming vector of
AOA measurements θ in M = N/2 subsets of two measure-
ments as follows:

θ̃m =
[

θ2m−1 θ2m

]T
m = [1, . . . , M ] (14)

Then, taking into account that R is diagonal, the cost function
φAOA

ML (z) shown in (5) can be expressed as

φAOA
ML (z) =

M∑
m=1

(
θ̃m − f̃m (z)

)T

R̃−1
m

(
θ̃m − f̃m (z)

)
(15)

where f̃m (z) =
[

f2m−1 (z) f2m (z)
]T

is the vector con-
taining the non-linear functions shown in (2) refereed only to
the AOA measurements included in θ̃m and R̃m contains their
variances as R̃m = diag

(
σ2

2m−1 σ2
2m

)
. Now from (15)

and applying the derivative with respect to the unknown posi-
tion we have

∇zφ
AOA
ML (z) = 2

M∑
m=1

G̃m (z)
T

R̃−1
m

(
θ̃m − f̃m (z)

)
(16)

and

G̃m (z) = ∇zf̃m (z) =

[
g2m−1 (z)T

g2m (z)T

]
(17)

where gn (z) is defined in (8). It can be observed in (16) that

we can make zero the term
(
θ̃m − f̃m (z)

)
for each m, but not

for all of them at the same time. Anyway, since θ̃m contains
only two AOA measurements, a partial position estimator ẑm

can be found only using these measurements satisfying the fol-
lowing set of two non-linear equations:

f̃m (ẑm) = θ̃m m = [1, M ] (18)

Indeed, this closed-form position estimate is the ML estimation
of the mobile position using only the pair of measurements in-
cluded in θ̃m, or what is the same, ẑm is the intersection of
the two straight lines defined by the two measured angles in-
cluded in θ̃m. After some straightforward mathematical ma-
nipulations, we can find the solution of the non-linear equations
presented in (18) as:

ẑm =

⎡⎢⎢⎣
y2m−y2m−1+x2m−1 tan(θ2m−1)−x2m tan(θ2m)

tan(θ2m−1)−tan(θ2m)

x2m−x2m−1+y2m−1 tan−1(θ2m−1)−y2m tan−1(θ2m)
tan−1(θ2m−1)−tan−1(θ2m)

⎤⎥⎥⎦
(19)

Now from (18) and assuming that the non-linear function f̃m (z)
can be linearized in the neighborhood of ẑm as

f̃m (z) ≈ f̃m (ẑm) + G̃m (ẑm) (z − ẑm) (20)
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and that G̃m (z) ≈ G̃m (ẑm) (in the neighborhood of ẑm), we
can approximate equation (16) as

∇zφ
AOA
ML (z) ≈ −2

M∑
m=1

C̃−1
m (z− ẑm) (21)

where

C̃m =
[
G̃m (ẑm)

T
R̃−1

m G̃m (ẑm)
]
−1

(22)

Finally from (21), it can be observed that ∇zφ
AOA
ML (ẑML) = 0

has a closed-form solution as:

ẑML ≈

M∑
m=1

Wmẑm (23)

where

Wm =

[
M∑

m′=1

C̃−1
m′

]−1

C̃−1
m (24)

In fact, equation (23) states that the ML position estimator us-
ing AOA measurements can be approximated by a linear com-
bination of the partial position estimates ẑm m = [1, M ]. These
partial estimates are obtained as the intersection of the straight-
lines defined by the AOAs grouped in sets of two measure-
ments.

4. FUSION WITH TDOA MEASUREMENTS

It is well known that fusing AOA and TDOA measurements is
a very good strategy to get more accurate position estimates.
The natural solution for this problem is again the application
of the Torrieri method with AOA and TDOA measurements at
the same time using a common initial guess z0. Simulation re-
sults show a great improvement between the performance of the
Torrieri method using only AOAs and using AOA and TDOA
when it is optimally initialized. However, as it will be shown in
the simulations, the problem is still the same: the performance
of the algorithm is very sensitive to the goodness of the initial
guess.

The idea now is to extend the algorithm presented in sec-
tion 3 to the generic case with N AOA measurements and
N − 1 TDOA measurements in order to achieve the same per-
formance as the Torrieri method optimally initialized but with-
out the need of an initial guess. If we can collect N AOA and
N −1 TDOA measurements, our signal model in (3) becomes:[

θ

t

]
=

[
f (z)
f ′ (z)

]
+

[
w

w′

]
(25)

where t = [t1, . . . , tN−1] is the vector containing the N -1
TDOA measurements, f ′ (z) =

[
f ′

1 (z) , . . . , f ′

N−1 (z)
]

are the
non-linear relationship between the TDOA measurements and
the unknownposition z and w′ =

[
w′

1, . . . , w
′

N−1

]
is the Gaus-

sian noise vector added to the TDOA measurements. The non
linear relations f ′

i (z) can be expressed now as:

f ′

i (z) = ||z− zi+1| | − ||z − z1| | (26)

As in the AOA measurements case, we will also assume that
the TDOA measurements are independently corrupted as:

R′ = E
[
w′w′T

]
= diag

(
σ′

1
2
, · · · , σ′

N−1
2
)

. (27)

As far as we are assuming that both kind of measurements are
not correlated E

[
w′wT

]
= 0, we can formulate the ML posi-

tion estimate as:

ẑML = argmin
z

φML ; φML = φAOA
ML (z) + φTDOA

ML (z)

(28)
where φAOA

ML (z) is defined in (4) and φTDOA
ML (z) can be ex-

pressed as

φTDOA
ML (z) = (t− f ′ (z))

T
R′−1

(t − f ′ (z)) (29)

From (15) to (21), it has been shown that

∇zφ
AOA
ML (z) = −2

M∑
m=1

C̃−1
m (z − ẑm) (30)

and with the same procedure, we obtain the equivalent expres-
sion for the TDOA measurements as:

∇zφ
TDOA
ML (z) = −2

M ′∑
m=1

[
C̃′

m

]
−1

(z − ẑ′m) (31)

where M ′ is the number of subsets of TDOA measurements
(as M was for AOA measurements), ẑ′m is obtained as the in-
tersection of the two hyperbolas defined by a pair of TDOAs
and C̃′

m (ẑm) are obtained in the same way as C̃m (ẑm) in (22)
using the specific non-linear function for TDOA measurement
shown in (26). Note that, as in the AOA case in (19), ẑ′m is also
obtained using a closed-form expression [5]. Finally, from (28)
, (30) and (31) we have

∇zφML =−2
M∑

m=1

C̃−1
m (ẑm) (z − ẑm)−2

M ′∑
m=1

[
C̃′

m

]
−1

(z − ẑ′m)

(32)
where we can extract a closed-form position for the position
estimate as:

ẑML =

M∑
m=1

WAOA
m ẑm +

M ′∑
m=1

WTDOA
m ẑ′m (33)

where

WAOA
m =

⎡⎣ M∑
m′=1

C̃−1
m′ +

M ′∑
m′=1

[
C̃′

m′

]
−1

⎤⎦−1

C̃−1
m

WTDOA
m =

⎡⎣ M∑
m′=1

C̃−1
m′ +

M ′∑
m′=1

[
C̃′

m′

]
−1

⎤⎦−1[
C̃′

m

]
−1

The conclusion is that we can extend the proposed algorithm
in a natural way to use AOA and TDOA measurements. The
general idea is, first compute the intersections between pairs
of straight lines defined by pairs of AOA measurements. Sec-
ond, compute the intersection between the hyperbolas defined
by pairs of TDOA measurements. Finally all the partial po-
sition estimates, obtained with simple intersections, are com-
bined in (33) to obtain the final position estimate.

5. NUMERICAL SIMULATIONS

The scenario selected for numerical simulations consists in 4
BSs uniformly distributed on a circle of radius 750 m centered
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Fig. 1. Torrieri algorithm performance

at the origin of coordinates. The mobile is randomly placed
following a uniform distribution inside a circle of radius 1500
m. The AOA measurements are all corrupted with a Gaussian
noise term of σn = 3 degrees for all the BS and the TDOA
measurements are corrupted with Gaussian noise of σ′

n = 60
meters. All the simulations use 10000 trials. Figure (1) shows
the Cumulative Distribution Function (CDF) of the position er-
ror of the Torrieri method using AOA measurements (left side)
and AOA+TDOAs (right side). In this figure, we can see the
performance of the Torrieri algorithm when it is initialized at
the correct point (optimum). This non-realistic performance is
used as a bound for the rest of methods. It can be seen in
both sides of the figure that the performance is degraded as the
error of the initial guess increases from 50 to 200 meters. Also
in both sides, we can see the performance if we use as initial
guess the intersection of two AOAs (Single intersection) or the
mean of the two intersections between the four AOAs grouped
in pairs (Combination of intersections). We can compare both
sides to see the improvements produced by the TDOA mea-
surements.

Figure (2) shows the CDF of the proposed algorithm using
the same AOA measurements (left side) or the same AOA and
TDOA measurements (right side) as in figure (1). It can be
seen that the performance of the proposed technique is close
to the performance of the Torrieri algorithm ideally initialized
in both scenarios (AOA or AOA+TDOA). Note that as far as
the Torrieri algorithm attains the Cramer-Rao Bound when it
converges, our approach also attains the CRB. In order to com-
pare with previous AOA-based approaches, the performance of
the closed-form algorithm presented in [4] has also been plot-
ted in the left side. Note that this previous approach did not
present a way to fuse TDOAs. Finally, in both sides, we show
the performance of the Torrieri approach initialized with the
closed-form solutions [4] and the one proposed here. It can be
observed that [4] is, in some cases, outperformed by the the
Torrieri approach initialized with [4]. This is not the case of
the proposed algorithm that outperforms the Torrieri approach
initialized with any initial guess. In conclusion, it can be
seen that the proposed algorithm outperforms the closed-form
algorithm presented in [4] and the Torrieri algorithm initialized
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Fig. 2. Proposed algorithm performance

with any initial guess, even with the closed-form proposed in
this paper.

6. CONCLUSION

In this paper we have proposed a novel closed-form algorithm
to compute the mobile position using AOA measurements, com-
bined with TDOA measurements as an option. This algorithm
is based on the Divide-and-Conquer approach dividing the orig-
inal set of AOA and TDOA measurements in subsets of two
measurements. Once the partial position estimate is computed
for each subset as simple intersections, they are optimally lin-
early combined. Numerical simulations show that the proposed
algorithm, outperforms the previous closed-form presented in
the literature and also outperforms the classical implementation
of the Torrieri algorithm using as initialization any reasonable
guess.
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