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ABSTRACT

This study deals with detection and localization of buried

objects. We developed a novel method, that extends the

subspace method, to estimate the bearing and the range of

buried objects with known shapes such as spheres or cylin-

ders. The idea is to use the spatial complexities of the scat-

tered field to form an acoustic model that we used instead

of the plane wave model used in the subspace method. The

received signals are wideband and correlated, thus we apply

a frequential smoothing in order to decorrelate them. We

applied this method first, on cylindrical shells and we ob-

tained a satisfying result [1] and here we will extend it to

spherical shells. Performances of the proposed method are

investigated on experimental data recorded during underwa-

ter acoustic experiments.

1. INTRODUCTION

Acoustic detection and localization of buried objects, in the

underwater acoustics environment, has received a great deal

of attention, in fact, several methods were developed for

mine field remediation, pipeline localization and archaeo-

logical site characterization. Some of them use acoustic

scattering to localize objects by analyzing acoustic reso-

nance in the time-frequency domain, but these processes are

usually limited to simple shaped objects [2]. Other methods

using a low frequency synthetic aperture sonar (SAS) have

been recently applied on partly and shallowly buried cylin-

ders in a sandy seabed [3]. The major difficulty encountered

with the SAS relates to expected large platform movements.

This original approach based on the subspace method, such

as the MUSIC method [4], has been recently extended to

buried objects in the electromagnetic domain [5].

The purpose of our study, is to extend the subspace method

to buried objects in the underwater acoustic environment in

order to estimate both the range and the bearing of spherical

shells. To our knowledge, this is the first time this method

has been extended to the underwater acoustic domain, in the

presence of correlated wideband signals and without any

constraint from a nearfield or farfield region of the array.

Our method consists in using an acoustic model [6], associ-

ated to spherical shells, at different frequencies, instead of

using the plane wave model in the subspace method which

estimates only the bearing of objects in the farfield region

of the array [4]. Furthermore, the frequencial smoothing

(wideband signals) is used in order to decorrelate the signals

by means of an average of the focused spectral matrices [7].

Throughout the paper, lowercase boldface letters represent

vectors, uppercase boldface letters represent matrices, and

lower and uppercase letters represent scalars. The symbol

”T” is used for transpose operation and the superscript ”+”

is used to denote complex conjugate transpose.

2. PROBLEM FORMULATION

We consider a linear array of N sensors which received the

wideband signals scattered from P objects (N > P ) in the

presence of an additive Gaussian noise. The received signal

vector, in the frequency domain, is given by

r(fn, θ, ρ) = A(fn, θ, ρ)s(fn) + b(fn), (1)

where, n = 1, ..., L, r(fn, θ, ρ) is the Fourier transforms

of the array output vector, s(fn) is the vector of object sig-

nals, b(fn) is the vector of white Gaussian noise of variance

σ2(fn) and A(fn, θ, ρ) is the transfer matrix (propagation

matrix) given by

A(fn, θ, ρ) = [a(fn, θ1, ρ1), ...,a(fn, θP , ρP )] , (2)

where,

a(fn, θk, ρk) = [a(fn, θk1, ρk1), ..., a(fn, θkN , ρkN )], (3)

where k = 1, ..., P , θk and ρk are the bearing and the range

of the kth object to the first sensor of the array R1 (see Fig.
1), thus, θk = θk1 and ρk = ρk1. The subspace method is

based on singular value decomposition of the spectral ma-

trix Γ(fn, θ, ρ), in order to separate the object subspace and

the noise subspace, which is given by

Γ(fn, θ, ρ) = A(fn, θ, ρ)Γs(fn)A+(fn, θ, ρ) + σ2(fn)I, (4)
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Fig. 1. Geometry configuration of the kth object localization.

where, Γs(fn) is the spectral matrix associated to the object

signals and I is the identity matrix.

3. PROPOSED METHOD

3.1. Acoustic model

In this section we present how to fill the propagation vector

used in Eq. (3) at a fixed frequency fn. Thus, consider the

case in which a plane wave is incident, with an angle θinc,

on the object k (infinite cylindrical shell or spherical shell),

located in a free space at the bearing θk and the range ρk).
The fluid outside the shells is labeled by 1, thus, the sound

velocity c1 and the wavenumber Kn1 = 2πfn

c1
.

Cylindrical shell: as defined in [1], the exact solution of

the acoustic scattered field is given by

acyl(fn, θk1, ρk1) = pc0

∑∞
m=0 jmεmbmH

(1)
m (Kn1ρk1)

cos(m(θk1 − θinc)), (5)

where pc0 is a constant, ε0 = 1, ε1 = ε2 = ... = 2, bm

is a coefficient depending on limits conditions and m is the

number of modes, Jm and Nm represent the Bessel func-

tions and Hm represents the Hankel function.

Spherical shell: in a similar manner, the exact solution of

the acoustic scattered field, in this case, is given by [6],

asph(fn, θk1, ρk1) = ps0

∑∞
m=0 BmH

(1)
m (Kn1ρk1)

Pm(cos(θk1 − θinc)), (6)

where ps0 is a constant and Pm(cos(θk1−θinc)) is the Leg-

endre polynomials [6].

Eq. (5) and Eq. (6) give the first component of the propaga-

tion vector, then, in a similar manner the other components

acyl(fn, θki, ρki) and asph(fn, θki, ρki) for i = 2, ..., N ,

associated to the ith sensor, can be formed, where θki and

ρki are calculated using the general Pythagorean theorem

applied to the configuration shown in Fig. 1.

ρki =
√

ρ2
ki−1 − d2 − 2ρki−1d cos(

π

2
+ θki−1) (7)

θki = cos−1[
d2 + ρ2

ki − ρ2
ki−1

2ρki−1d
], (8)

where d is the distance between two adjacent sensors. Note

that, the main goal of the representations given by Eq. (7)

and Eq. (8), is to reduce the number of variables to be deter-

mined. Thus only θk1 and ρk1 are estimated by the proposed

method.

3.2. Frequential smoothing

In this section, the frequency diversity is employed, thus

this choice is made in order to decorrelate the signals. The

idea is to use the bilinear focusing operator [7], to transform

the narrowband data in each frequency bin into a single ref-

erence frequency bin f0. The object subspace is defined as

the column span of the transfer matrix A(fn, θ, ρ). Thus,

the object subspaces at different frequency bins are differ-

ent. The coherent subspace methods combine the different

subspaces in the analysis band by the use of the focusing

matrices. The focusing matrices T(f0, fn) compensate the

variations of the transfer matrix with the frequency. Thus

these matrices verify T(f0, fn)A(fn, θ, ρ) = A(f0, θ, ρ),
The use of the focusing matrices enable us to coherently

average the different focused spectral matrices and then to

decorrelate the signals [7]. Here, f0 is the middle frequency

of the spectrum of the received signal and it is chosen as the

focusing frequency.

The following is the step-by-step description of the devel-

oped method:

1. using an ordinary beamformer to find an initial esti-

mate of θ, ρ and the number of objects P ,

2. filling the transfer matrix Â(f0, θ, ρ), given by Eq.

(2) and using the estimated parameters of step 1,

3. estimating the spectral matrix output sensors data

Γ(fn, θ, ρ) using Eq. (4),

4. calculating objects spectral matrix using:
Γs(fn, θ, ρ)= (Â+(fn, θ, ρ)Â(fn, θ, ρ))−1Â+(fn, θ, ρ)
[Γ(fn, θ, ρ) − σ̂2(fn)I]Â(fn, θ, ρ)
(Â+(fn, θ, ρ)Â(fn, θ, ρ))−1,

where, I is the identity matrix and σ̂2(fn) the estimated

noise variance that is estimated by :

σ̂2(fn) = 1
N−P

PN
i=P+1 λi(fn), where λi(fn) is the ith

eigenvalue of Γ(fn, θ, ρ),

5. calculating the average of the spectral matrices associated

to the objects:

Γs(f0, θ, ρ) = 1
L

PL
l=1 Γs(fn, θ, ρ),

6. calculating Γ̂(f0, θ, ρ) = Â(f0, θ, ρ)Γs(f0, θ, ρ)Â+(f0, θ, ρ)
and Γ̂(fn, θ, ρ) = Γ(fn, θ, ρ) − σ̂2(fn)I,

7. estimating the bilinear focusing operator:

T(f0, fn) = V(f0)V
+(fn), where V(f0) and V(fn) are

IV  918



the eigenvector matrices of Γ̂(f0, θ, ρ) and Γ̂(fn, θ, ρ), re-

spectively,

8. calculating the average of the focused matrices:

Γ̄(f0, θ, ρ) = 1
L

PL
l=1 T(f0, fn)Γ̂(fn, θ, ρ)T+(f0, fn).

Finally, the spatial spectrum is given by

Z(f0, θk, ρk) = 1
a(f0,θk,ρk)+V̄b(f0)V̄

+
b (f0)a(f0,θk,ρk)

,

where V̄b(f0) is the eigenvector matrix of Γ̄(f0, θ, ρ) asso-

ciated to the smallest eigenvalues.

4. EXPERIMENTAL SETUP

Underwater acoustic data have been recorded in an experi-

mental water tank (Fig. 2) in order to evaluate the perfor-

mances of the developed method. This tank is filled with

water and homogeneous fine sand, where are buried four

couples of different objects, between 0 and 0.005 m under

the sand. The considered objects have the following charac-

teristics:

• the 1st couple: spherical shells, ∅a = 0.3 m, δ = 0.33
m, full of air,

• the 2nd couple: cylindrical shells, ∅a = 0.01 m, δ =
0.13 m, full of air,

• the 3rd couple: cylindrical shells, ∅a = 0.018 m, δ =
0.16 m, full of water,

• the 4th couple: cylindrical shells, ∅a = 0.02 m, δ =
0.06 m, full of air,

where δ represents the distance between the two objects of

the same couple and ∅a the outer radius (the inner radius

∅b = ∅a − 0.001 m).

The considered sand has geoacoustic characteristics close

to those of water. Consequently, we can make the assump-

tion that the objects are in a free space. The considered

Fig. 2. Experimental tank

objects are made of dural aluminum with density D2 =
1800 kg/m3, the longitudinal and transverse-elastic wave

velocities inside the shell medium are cl = 6300 m/s and

ct = 3200 m/s, respectively. The external fluid is wa-

ter with density D1 = 1000 kg/m3 and the the internal

fluid is water or air with density D3air = 1.2 10−6 kg/m3

or D3water = 1000 kg/m3. We carried out eight experi-

ments where the horizontal axis of the transmitter is fixed

at 0.45 m from the bottom of the tank with an incident an-

gle θinc = 60 ˚ and the receiver moves horizontally, step

by step, with a step size d = 0.002 m and takes 10 posi-

tions in order to form an array of sensors with N = 10.

The first time, we fixed the receiver horizontal axis at 0.2 m

from the bottom of the tank, then, we did four experiments,

Exp. 1, Exp. 2, Exp. 3 and Exp. 4, associated, respectively,

to the 1st, 2nd, 3rd and 4th couple. Then, the horizontal

axis of the receiver was fixed at 0.4 m and in the same man-

ner we did four other experiments Exp. 5, Exp. 6, Exp. 7
and Exp. 8 associated, respectively, to the 1st, 2nd, 3rd and

4th couple. For each experiment, the transmitted signal had

the following properties; impulse duration is 15 µs, the fre-

quency band is [fL = 150, fU = 250] kHz, the mid-band

frequency is f0 = 200 kHz and the sampling rate is 2 MHz.

The duration of the received signal was 700 µs.

At each sensor, time-domain data was collected and the

(a) (b)

Fig. 3. Experimental data. (a) Time. (b) Frequency.

sensor output signals associated to one experiment are shown

in Fig. 3.

5. EXPERIMENTAL RESULTS

The steps listed above in section 3.2, are applied to each

experimental data, thus, we did an initialization of θ, ρ and

P using the conventional beamformer and for example for

Exp. 1, those three parameters had been initialized by P =
1, θ1 = 15 ˚ and ρ1 = 0.28 m. Furthermore, the average of

the focused matrices was calculated using L = 50 frequen-

cies and a sweeping on the bearing and the range had been

applied ([−90 ˚ ,90 ˚ ] for the bearing with a step 0.1 ˚ and

[0.15, 0.7] m for the range with a step 0.002 m). The ob-

tained spatial spectrum of the proposed method associated

to the spherical shells and some of those associated to the

cylindrical shells that had been presented in [1], are shown

in Fig. 4.

Table 1 summarizes the expected and the estimated range
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Fig. 4. Spatial spectrum of the proposed method. (a) Exp.1. (b)

Exp.5. (c) Exp.3. (d) Exp.8

and bearing objects obtained using the proposed method.

The indexes 1 and 2 are the 1st and the 2nd object of the

same couple. Satisfying results are obtained, thus the ma-

jority of bearing and range objects are successfully esti-

mated. Furthermore, the difference between the estimated

values θ(1,2)est, ρ(1,2)est and the expected values θ(1,2)exp,

ρ(1,2)exp is very small. Thus, we obtained an RMSEθ =
0.48 ˚ and RMSEρ = 0.02 m using the following equation

RMSEX =

√
8P

i=1
[(Xexp1−Xest1)

2
i +(Xexp2−Xest2)

2
i ]

16 , where X

represents θ or ρ and i the experiment. One cylinder was

not localized in Exp. 6, because, the received echo, asso-

ciated to this cylinder, is rather weak, thus, it is important

to realize that there are some phenomena which complicate

the object detection in an experimental tank, as the attenua-

tion of high frequencies in sediment is much higher than low

frequencies. The frequencies used here are [150, 250] kHz

represent high frequencies.

6. CONCLUSION

In this study, we have proposed a novel method to estimate

both the range and the bearing of buried objects. An acous-

tic model, developed using the exact solution of the scat-

tered field, is used, therefore, there are no constraints from

nearfield or farfield region of the array. Furthermore, we

have taken into account the correlated signal problem and

to cope with this problem, we used the bilinear focusing op-

erator. Therefore, the objects can be localizes even if the

received signals are totally correlated. The performances

of this method are investigated through experimental data

associated to many spherical and cylindrical shells buried

under the sand. The proposed method is superior in terms

of performance to the conventional method.

Exp.1 Exp.2 Exp.3 Exp.4

θ1exp( ˚ ) −26.5 −23 −33.5 −32.5
ρ1exp(m) 0.24 0.24 0.26 0.26
θ2exp( ˚ ) 44 9.2 5.5 −20
ρ2exp(m) 0.31 0.22 0.24 0.22
θ1est( ˚ ) −25 −23 −33 −32
ρ1est(m) 0.22 0.25 0.26 0.28
θ2est( ˚ ) 43 9 6 −20
ρ2est(m) 0.32 0.24 0.25 0.23

Exp.5 Exp.6 Exp.7 Exp.8

θ1exp( ˚ ) −50 −52.1 −50 −51.6
ρ1exp(m) 0.65 0.65 1.24 0.65
θ2exp( ˚ ) −22 −41 −42.5 −49.5
ρ2exp(m) 0.45 0.56 0.58 0.64
θ1est( ˚ ) −49 − −50 −51
ρ1est(m) 0.65 − 0.64 0.63
θ2est( ˚ ) −22 −41 −42 −49
ρ2est(m) 0.44 0.55 0.57 0.62

Table 1. The obtained range and bearing objects. (−θ is clock-

wise from the vertical)
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