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ABSTRACT

Distributed processing algorithms are attractive alternatives to cen-
tralized algorithms for target tracking applications in sensor net-
works. In this paper, we determine an initial probability distribu-
tion of multiple target states in a distributed manner to initialize
distributed trackers. Our approach is based on Monte-Carlo meth-
ods, where the state distributions are represented as a weighted set
of discrete state realizations. The filter state vector consists of the
target positions and velocities on the 2D plane. Our approach can
determine the state vector distribution even if the individual sen-
sors alone are not capable of observing it. The only condition is
that the network as a whole be able to observe the state vector.
A robust weighting strategy is formulated to account for missed
detections and clutter. To demonstate the effectiveness of the algo-
rithm, we simulate a network with direction-of-arrival nodes and
range-doppler nodes.

1. INTRODUCTION

In sensor networks, distributed processing is becoming more pop-
ular than centralized approaches [1]. This is because centralized
networks with only one processing node are vulnerable if that par-
ticular node is incapacitated. The communication overhead is also
significant because if all the sensing nodes are trying to transmit
raw data to the central processing node, the required bandwidth in-
creases significantly with the number of nodes. To overcome these
drawbacks, a distributed processing approach is attractive.

Distributed processing stipulates processing capabilities at in-
dividual sensors. We denote a sensor that has the ability to pro-
cess data and communicate with neighboring sensors in addition to
sensing the environment as a smart sensor. Distributed processing
eliminates the need for a central processing node. Since a smart
sensor can process its own data, it need only transmit sufficient
statistics in the communication channel, minimizing the commu-
nication among sensors. Communication consumes more battery
power than computation, hence smart sensor networks with dis-
tributed processing have additional advantages.

In this paper, a novel method for determining initial multiple
target state distributions in a smart sensor network is proposed for a
distributed framework. A Monte-Carlo method is used to generate
a discretized approximation to the target state distribution. This
distribution is represented using hypothesized target states called
particles and their associated weights. The resulting distribution
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can be used to initialize various distributed joint tracking (DJT)
algorithms such as the ones in [2–6].

The algorithm satisfies the typical constraints of a distributed
system. The communication between individual sensors has fixed
bandwidth. Since the data propagated between sensors is the cu-
mulative state information, the amount of data passed between
individual sensors does not increase with the number of sensors.
The sensor types focused on are Direction of Arrival (DOA) nodes
(e.g., acoustic arrays with known microphone positions) and range-
doppler nodes (e.g., a radar sensor). However, the results are gen-
eral and can be extended to networks with different sensor modali-
ties. Each sensor runs a tracking algorithm that operates in a differ-
ent state space determined by the sensor modality. We shall refer
to the tracking algorithms running at the individual sensors as or-
ganic trackers. The DJT operates in a state space which may be
different from the state spaces of the organic trackers at the indi-
vidual nodes. We assume that each tracker is capable of detecting a
new target. When an organic tracker detects a new target in its lim-
ited subspace, it transmits information throughout the network to
generate the target state distribution. We also have a robust weight-
ing strategy that can accommodate clutter as well as missing data.
Moreover, communication takes place between neighboring sen-
sors only and there is a predefined path for the information flow
through the network from the first sensor to the last sensor.

2. ACOUSTIC AND RADAR TRACKERS

The two types of sensor nodes used to demonstrate the initializa-
tion algorithm are DOA sensors and Range-Doppler sensors. The
DOA tracker operates in the [θ q φ]′ space where θ is the direc-
tion towards the target, q is the ratio of the target’s velocity to the
target’s range and φ is the heading direction of the target. The
range-doppler tracker operates in the [r vr]

′ space where r is the
range to the target and vr is the target’s radial velocity [7–10].

The focus of this paper is to generate a probability distribu-
tion for the target in the [x y vx vy ]′ space where x and y are
the Cartesian coordinates of the targets location and vx and vy are
the velocity components along the x-y directions. Notice that the
true location and velocity of the target is not observable at any
single node and that the organic trackers operate in different state
spaces that have lower dimensionality than the DJT state space. It
is assumed that organic trackers are running at the various nodes
and the outputs of the organic trackers are used to generate the de-
sired probability distribution. The sensor network is assumed to be
calibrated so each sensor is aware of its own location. However,
sensors need not be aware of the locations of other sensors in the
network.
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3. A MONTE-CARLO APPROACH FOR THE
DISTRIBUTED ESTIMATION OF THE TARGETS

PROBABILITY DISTRIBUTION

We choose as our proposal function

π(xt|zt) =
1

M

MX
m=1

p(xt|zm,t), (1)

where xt is the target state vector, zt is the set of measurements
from all nodes in the network, zm,t is the measurement vector at
the mth node and M is the total number of nodes in the network.
Equation (1) represents an equally weighted mixture of the indi-
vidual posterior distributions from the individual nodes. It is de-
sired that the target should be initialized in the [x y vx vy ]′ space.
Assume the state vector is n-dimensional in general. Also, as-
sume that at sensor m, target measurements are represented by s
dimensional feature vectors , where 0 < s ≤ n. If any of these
measurements are not functions of the state vector, they will not
contribute any useful information for tracking and, therefore, they
can be discarded. Thus, without loss of generality, we can assume
each measurement is a function of the state vector.

zm,t = fm(xt) =

2
6664

fm,1(xt)
fm,2(xt)

...
fm,s(xt)

3
7775 . (2)

We shall now determine the conditions fm(·) must satisfy in order
for one to be able to sample (1). Let fm(·) be a continuously dif-
ferentiable vector valued function. If and only if all measurements
at a particular sensor provide complimentary information without
redundancy, then

det(∇fm(xt)) �= 0. (3)

If any of the measurements provide redundant information, those
particular measurements can be discarded to give a measurement
space of reduced dimension and no redundancy. Therefore, we can
assume all measurements provide complementary information and
(3) is satisfied.

First, consider the case, when s < n. Given the measurements
zm,t, the system in (2) is underdetermined. Therefore, there exist
infinitely many solutions for xt. These solutions form a level set in
the state space. In some cases, the level set can be represented by
explicit equations relating the state variables. However, this may
not be possible in most cases even though the level sets do exist.
Let α be any solution of (2). By the Implicit Function Theorem,
in the neighborhood of α, the level set Lf (zm,t) is an n − s di-
mensional manifold. Let Λ represent the set of all such manifolds.
Particles can be generated by sampling uniformly from points in
Λ and adding appropriate noise determined by the measurement
model.

Now consider the case, when s = n. By the Inverse Func-
tion Theorem, given measurements zm,t, a unique inverse func-
tion f−1

m (·) exists in the neighborhood of zm,t and therefore there
exists a unique solution to (2) given by

xt = f−1
m (zm,t). (4)

Hence, particles can be sampled from an appropriate distribution
centered at xt with variance determined by the measurement model.
This implies that the particles can be sampled from the individual

posterior distributions without sharing raw data.
If the total number of nodes is M , then to sample D parti-

cles from the mixture given by (1), one can sample D/M parti-
cles from each individual posterior and combine these particles to
generate a final set of D particles. However, this method has an
inherent disadvantage. If one of the nodes does not detect the new
target, D/M particles are spread uniformly over the entire state
space for that node and these particles do not add any information
to the system. Instead of sampling these particles uniformly, it is
desirable to sample only from the posteriors for the nodes that have
detections. Hence, more particles cover the state space of interest.
These disadvantages can be eliminated by implementing the algo-
rithm given in this paper, where a weighted resampling operation
ensures that the various individual posteriors for nodes with de-
tections are equally weighted irrespective of the total number of
nodes. In the algorithm, resampling does not require synchroniza-
tion of the nodes.

Once the particles are sampled, they need to be weighted.
Since the data from individual nodes is not shared, the compo-
nents forming the weights must be computed at each node and the
cumulative weights should be transmitted. It is shown in [11] that
the particle weights are given by

w
(i)
t =

p(x
(i)
t |zt)

π(x
(i)
t |zt)

. (5)

From (1), the Bayes’ rule and the fact that the measurements at the
various sensors are independent given the target state, (5) can be
simplified to

w
(i)
t ∝

QM
m=1 p(zm,t|x(i)

t )
PM

m=1

p(zm,t|x(i)
t )

p(zm,t)

. (6)

Thus, the weights for the particles can be calculated, up to a pro-
portionality constant, by evaluating a quotient in which the nu-
merator is the product of the data likelihoods from the individual
nodes and the denominator is a weighted sum of the same like-
lihoods. Hence, the weights can be updated cumulatively if the
numerators and denominators are communicated between nodes.

When the final particles are proposed, there is an ambiguity
as to which sensor proposed a particular particle. If a particu-
lar sensor detects multiple targets, then this brings in additional
complexity, since the particles can not be associated with their de-
tectors. If a simple Gaussian likelihood function is used and the
likelihood for a particle is zero at one of the sensors, then based
on (6) its overall weight will also be zero. This situation occurs if
even one sensor does not detect a target. In such a situation, one
would not want the overall weight of the particle to be zero since
the target is present with high probability if all the other sensors
detect the target. To avoid this degeneracy, it is important that a
robust likelihood function that accounts for missed detections be
used.

The approach used here is similar to the approach used in [12].
Assume that there are M sensors in the network and consider the
weighting at sensor m. Assume that sensor m detects K targets.
Then, given a particle, or a hypothesized target state x

(i)
t , the mea-

surements zm,k,t, k = 1, . . . , K, could have been generated either
by a target or by clutter. The clutter distribution is assumed to be
Poisson with spatial density λ. The probability of miss is given by
q. It is assumed that there is an equal probability for each of the K
measurement vectors to be the true measurement and the true tar-
get measurement is Gaussian distributed about the true target state.
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ALGORITHM:

• Sequentially Sampling the Proposal Function
D = Number of particles used for initialization.
S(i) = Sensor i, where i = 1, ..., M
w̃ = 0
If S(1) has a detection,

– sample D particles based on the posterior distribution
at S(1),

– each particle will have equal weight,

– w̃ = w̃ + 1,

Else,

– set all particles equal to 0.

Send particles and w̃ to S(2).
For i = 2, ..., M

– current sensor is S(i),

– accept D particles and w̃ from S(i − 1),

– give each received particle a weight of w̃.

– If S(i) has a detection,

∗ sample D new particles based on the posterior
distribution at S(i),

∗ each new particle will have equal weight,
· give each new particle a weight of 1

∗ from the 2D particles, obtain D particles by us-
ing a weighted sampling with replacement,

∗ each particle will now have equal weight,
∗ w̃ = w̃ + 1.

– Send particles and w̃ to S(i + 1).

�

Thus, as shown in [12], the likelihood function can be simplified
as: p(zm,t|x(i)

t ) ∝

1 +
1 − qp

(2π)s|Σ|qλ

KX

k=1

e−
(zm,k,t−g(x(i)

t ))T Σ−1(zm,k,t−g(x(i)
t ))

2 ,

(7)
where s is the dimensionality of the measurement vector at sensor
m, Σ is the covariance of the measurement model, and g(.) is the
mapping from the target state to the measurement state. Putting all
this together, we formulate the given algorithm.

4. SIMULATIONS

Figure 1 demonstrates the initialization strategy for one target that
appears at (50, 50)m with a velocity vector of (14, 14)m/s. For
the purpose of this simulation, we assume that only 4 sensors in
the sensor network detected the target: two acoustic sensor nodes,
located at (200,−200)m and (1200, 200)m, and two radar nodes,
located at (500, 400)m and (800,−300)m. Organic trackers at
these four nodes detect this target and produce estimates in their
own state spaces. D = 2000 particles were used to adequately
sample the state space of interest. Figures 1(a) to 1(d) represent
the sequential particle proposal stages of the algorithm. Although
all particles are four dimensional, most of the subfigures in Fig. 1
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Fig. 1. Simulation for single target

show only the x-y locations of the particles. The velocity informa-
tion is then shown in Fig. 1(f).

Weights are calculated for the final particles shown in Fig. 1(d).
Particles along with their weights are shown in Fig. 1(e) and this
represents the probability distribution of the target in the x-y space.
As expected, the distribution is highly peaked around the true tar-
get state. Estimates of the true target state can be made based on
this weighted set of particles. These estimates can be used to ini-
tialize any distributed tracking algorithm.

It is observed that the majority of particles have extremely low
weights and do not contribute any useful information. To eliminate
these particles and replicate those with high weights, the particles
are sampled with replacement according to their weights to give
the set of particles in Fig. 1(f). Here the circles represent the par-
ticle positions and the lines extending from the circles represent
the magnitude and direction of the velocities. It can be seen that
the final set of particles is concentrated around the true target state
at [ 50m, 50m, 14m/s, 14m/s ]T .The mean of these particles
is [ 46.5m, 69.6m, 13.7m/s, 15.3m/s]T and the variance for
each state is [ (35m)2, (55m)2, (4m/s)2, (4.4m/s)2]T . These
variances could be reduced by increasing the number of particles.
However, the main determinant of the final estimation variances is
the distributed nature of the problem.

The final set of particles were used to initialize a distributed
particle filter tracker that the authors are developing. In Fig. 2,
the true track is given by the solid line, whereas the estimated
track is given by the dashed line. For comparison, tracking is
also performed when the tracker is initialized using a uniform grid
based approach. In this approach, 6000 particles are proposed
uniformly over the entire state space of interest and the measure-
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ments at the individual sensors are simply used for weighting the
proposed particles. In this case, the track is represented by the
dotted line. The ∇ symbols represent the radar nodes and the ×
symbols represent the acoustic nodes. Gaussian noise was added
to the measurements at the various nodes. The noise had a co-
variance of diag([ 3◦, 0.03sec−1 , 12◦]2) for the acoustic sensor
nodes and diag([ 9m, 0.6m/s]2) for the radar nodes. As observed,
the tracking algorithm is rather accurate when initialized using the
proposed Monte-Carlo approach. Tracking results are very poor
when the uniform grid based approach is used for initialization
even though three times as many particles are used to initialize the
target. Because the initial target distribution does not provide ef-
fective support, the range measurements of the radar sensors do
not contribute to the DJT performance.
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Fig. 3. Simulation for two targets using 2000 particles

Figure 3 simulates the initialization for two targets. Here, the
sensor locations are the same as earlier, and the true target states
are given by [ 50m, 50m, 14m/s, 14m/s ]T and [ 50m, 400m,
14m/s,−14m/s ]T . The weighted particle set is shown in Fig. 3(a).
The distribution of the target state is clearly seen in Fig. 3(b),
which represents the set of particles that survive the weighted re-
sampling operation. As expected, the particle distribution is con-
centrated about the true target states.

5. CONCLUSIONS AND FUTURE WORK

A method for generating the probability distribution that models
missed detections and clutter for multiple targets in a distributed
smart sensor network is proposed. A Monte-Carlo method is used
to sequentially sample the state space of interest to generate par-
ticles, and then a robust weighting function is used to represent

the degree of belief in each particle. This weighting function can
accommodate multiple targets, clutter and missing data. The final
target state distribution is represented as a weighted set of particles
that can be used to make various inferences about the target state
and also to initialize various distributed tracking algorithms.

For the purpose of this paper, the prior target state distribution
was assumed to be uninformative and chosen to be uniform. Future
work will also consider the case of informative priors to generate
distributions reflecting prior knowledge of the true target state.
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