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ABSTRACT

A method is derived for passively locating wide-band targets

(typically acoustic targets) which may be moving at speeds

sufficient to produce significant Doppler shift. The method in-

volves a generalisation of standard beam forming techniques.

It is shown that conventional beam forming techniques have

less discrimination in the direction of motion of the sources,

whereas the proposed technique exhibits no such degradation.

The derivative and Hessian of the likelihood function can be

used for locating the maximum likelihood solution or for de-

riving a Gaussian approximation to the likelihood function for

particle filtering applications. The expressions are applicable

for subsonic and supersonic sources.

1. INTRODUCTION

This paper addresses the problem of optimal localisation and

tracking of objects which are emitting or reflecting wide-band

signals, and moving with a speed which is a significant pro-

portion of the speed (c) of the wave being emitted.

The most basic localisation/tracking scenario involves a

single, narrow-band target moving slowly in a straight line

in a homogeneous medium. Most real systems involve one

or more complicating factors, such as reverberation, multiple

targets, or wide-band signals. Wide-band systems, for exam-

ple, face the issue of how to optimally (coherently or incoher-

ently) combine the information contained across the available

bandwidth [1].

This paper considers another complicating factor which

arises when the targets are moving rapidly. Most localisation

techniques are based on instantaneous snapshots of the en-

vironment of the sensor array, with the assumption that the

travel distance within the duration of the snapshot is not sig-

nificant. The problem can be avoided to some extent by mak-

ing the snapshots very short, and this has been by far the most

common approach. Zhou et. al. [2] make a point of explicitly

modelling the time variation caused by target movement, but

only in the narrow-band situation, and with the implicit as-

sumption that Doppler shift has not caused the signal to move

significantly out of this narrow band. The formulation in

this paper is for signals with a high bandwidth-time-duration

product, although it allows for pass bands of any frequency or

width.

If the velocity of the targets is large, the Doppler shift can

be significant. The Doppler shift is particularly difficult to

deal with when the target is close to the sensor array. At this

point, the Doppler shift is not even approximately constant, as

it rapidly changes from a positive frequency shift to a nega-

tive frequency shift. A significant Doppler shift is more likely

to be encountered with an acoustic wave than an electromag-

netic wave, hence the formulation presented in this paper is

for a non-relativistic situation. As is shown in Section 4, tar-

get speeds as low as 0.03c may be significant for accurate

estimation of source location.

The approach presented in this paper requires that the lo-

cation and velocity of the targets be modelled explicitly. In

one sense this is a disadvantage, as the dimensionality of the

problem (i.e., the number of unknowns) is doubled. On the

other hand, most tracking schemes use Bayesian techniques

of some kind (such as Kalman filters or particle filters) in

which the velocity of the targets is already an intrinsic part

of the model [3], even though the velocity information con-

tained in the model is not used as part of the update phase. So

in this sense, the complexity of the state model is unchanged

by explicit inclusion of the target velocity in the a posteriori
probability calculations.

The paper is organised as follows. In the next section we

present the signal model which explicitly includes the effects

of Doppler shift. In Section 3, the likelihood function is de-

rived for unknown spatial parameters associated with a re-

ceived signal based on the model. In Section 4 some simula-

tions are presented which demonstrate the effectiveness of the

model in reducing uncertainty in the target location caused by

the target motion. Section 5 concludes the paper.

2. RECEIVED SIGNAL MODEL

Consider a source, initially at location ds, travelling with ve-

locity vs, and emitting a signal at time t0. The signal is de-

tected at time t = t0 + τ by a sensor which is initially at dr,

and travelling with velocity vr. For both the source and sen-

sor, ‘initially’ means time t = 0, which in general is not equal

to t0. The distance travelled by the wave before detection is

IV ­ 9091­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



cτ , where c is the velocity of the wave. Thus

‖(ds + t0vs) − (dr + tvr)‖ = cτ (1)

This can be rearranged as

‖d + vs(t − τ) − vrt‖ = cτ (2)

where d = ds − dr. Defining d � ‖d‖, vs � ‖vs‖, v �
vs − vr, v � ‖v‖, (2) can be arranged as

(c2 − v2
s)τ2 + 2((d + vt) · vs)τ − ‖d + vt‖2 = 0 (3)

Solving for τ , we find that

τ(t) =

−(d + vt) · vs ±
√

((d + vt) · vs)2+
‖d + vt‖2(c2 − v2

s)

(c2 − v2
s)

(4)

=
±

√
a2
0t

2 + 2b0t + c2
0 + d0t + e0

(c2 − v2
s)

(5)

where

a2
0 = (v · vs)2 + v2(c2 − v2

s)

b0 = (d · vs)(v · vs) + (d · v)(c2 − v2
s)

c2
0 = (d · vs)2 + d2(c2 − v2

s)
d0 = −v · vs

e0 = −d · vs

For subsonic source velocities, only the addition of the surd

produces a positive delay. For supersonic source velocities

(vs > c), there is the possibility of both addition and subtrac-

tion yielding a positive time, and also the possibility that the

wave never reaches the sensor at all.

Assuming that the target is an isotropic radiator, we can

represent the signal emitted by the source as s(t). Assuming

that the signal power decreases with the square of the dis-

tance, and neglecting turbulence effects, the signal detected

at the sensor is given by r(t) = s(t − τ(t))/cτ(t). The emit-

ted signal s(t), in the time window t = 0 to time t = T , can

be represented by its Fourier series decomposition as s(t) =∑∞
�=−∞ S�e

jω0�t, where ω0 = 2π/T . This implies that the

signal is periodic with period T , and in practice some window

function will normally be applied to the data to minimise the

error caused by this assumption. It is important at this point to

note that the parameter ds is defined as the target location at

t = 0, i.e., the time at which the signal in this window begins

to be received at the sensor array, which will not be the same

location as when the signal was first emitted.

In most cases the received signal will be sampled at rate

fs samples per unit time, with sample rk � r(k/fs). These

samples can be expressed in terms of the emitted signal as

rk =
∞∑

�=−∞
S�

1
cτ(k/fs)

ejω0�(k/fs−τ(k/fs)). (6)

The discrete Fourier transform Rq, q ∈ [−K/2,K/2 − 1]
(K = Tfs, and for notational simplicity we assume that K is

even) of the received signal rk is given by

Rq =
K−1∑
k=0

rke−j 2πkq
K

=
∞∑

�=−∞
S�

K−1∑
k=0

1
cτ(k/fs)

ejω0(k/fs(�−q)−�τ(k/fs)). (7)

If we assume that the received signal is band-limited, then

only values of � in the range [−L/2, L/2−1] need be consid-

ered. Defining vectors of signals r � (r0, . . . , r(K−1))T , S=
(S−L/2, . . . , SL/2−1)T , and R = (R−K/2, . . . , RK/2−1)T ,

then (6) can be written in matrix form as r = BS and (7) as

R = AS, with the columns of A being the discrete Fourier

transform of the columns of B.

We use M to denote the number of sensors, and (extend-

ing the model to include multiple targets) N to denote the

number of targets. The emitted and received signal vectors

may be stacked to obtain⎡⎢⎣ R1

...

RM

⎤⎥⎦ =

⎡⎢⎣ A11 . . . A1N

...
...

AM1 . . . AMN

⎤⎥⎦
⎡⎢⎣ S1

...

SN

⎤⎥⎦ (8)

which can be expressed as r = As + η. We have here intro-

duced a normal noise term η, with E
{
ηηH

}
= σ2I, where

E {} is the expectation operator and I is the identity matrix of

size MK. We are thus assuming the noise is both temporally

and spatially white and of equal power at each frequency and

location. (In the presence of ambient localised noise sources

this assumption will of course be inaccurate).

Rather than the structure shown in (8), the elements of r
can alternatively be arranged as K lots of M , and the ele-

ments of s can be arranged as L lots of N , with consequent

rearrangement of the structure of A. This may have compu-

tational advantages. If small entries can be approximated as

zero, and A is sparse, then the rearrangement of r (but not of

s) results in the non-zero elements of A being concentrated

near the diagonal.

3. LIKELIHOOD FUNCTION

Given the assumed noise model, the likelihood of observing a

particular signal r is thus

p(r|A(θ), s, σ2) =
e−(r−As)H(r−As)/(2σ2)

(2πσ2)MK
. (9)

The maximum likelihood solution to this equation with re-

spect to the spatial parameters (location and velocity) θ =
(ds1,vs1, . . . ,dsN ,vsN ) is [2]

θ̂ = arg min
θ

J (10)
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Fig. 1. Plot of conventional delay and sum beam former like-

lihood function for a source moving at 0.03c. The line shows

the trajectory of the source, from the location at which the

first sound is emitted which arrives at the sensors at t = 0, to

the location of the source at t = T . The arrowhead part way

along this line is the location of the source at t = 0, and is

the location we wish to determine. The squares represent the

sensor locations, and the circle represents the location of the

largest value of the likelihood function.

where J = rH(I − AA+)r = rH(I − P)r , A+ is the

generalised inverse of A, and P = AA+.

For some applications, finding the maximum likelihood

solution is all that is required. For particle filtering, we may

wish to assume some prior distribution for s, and possibly σ2,

so as to find an a posteriori probability density for r. One

approach, analogous to that taken by [3], assumes a Jeffrey’s

prior for σ2, and (to avoid problems with rank deficiency in

AHA), a prior on the signal which is proportional to |AHA|,
resulting in the density

p(r|A(θ)) ∝ (rH(I − P)r)LN−KM . (11)

An alternative approach, which achieves good results, is

described in [4]. The situation described there is for only

one target, but can be extended to N > 1. What they call

a “pseudo-likelihood” is used which amounts to

p(r|A(θ)) ∝ (rHPr)W . (12)

where W ∈ R
+ is chosen so as to achieve a suitable compro-

mise between localisation accuracy and particle impoverish-

ment.

To apply a Newton descent type algorithm for finding the

maximum likelihood solution, we wish to find the first and

second derivative of (10) with respect to the unknown spa-

tial parameters. We also need the derivative of the likelihood

function if we wish to use a Gaussian approximation of the

Fig. 2. Plot of likelihood function based on the proposed sig-

nal model for a source moving at 0.03c. This is a section

through a a peak of a likelihood function of double the di-

mension of Fig. 1.

optimal importance function of a particle filter. The calcula-

tions of these derivatives is tedious, and they are omitted here

for lack of space.

4. SIMULATIONS

This Section briefly presents a few simulations which demon-

strate the problem with the use of conventional beam form-

ing approaches to source localisation, when the speed of the

source is reasonably high.

The first simulation is similar to that of [4], except that

in this case, the effects of reverberation are neglected, and

the source speed is greater. There are eight microphones,

each sampling at 8000 Hz, located at (1.315, 0), (1.916, 0),
(3.83, 0.85), (3.83, 1.45), (2.515, 2.9), (1.915, 2.9),(0, 2.05),
and (0, 1.45). (These dimensions are in metres.) A single tar-

get moves from (2.3, 0.9) to (1.3, 2.1) at a speed of 10 ms−1

(0.03c), at the same height as the sensors, emitting a sig-

nal which is approximately white up to 400 Hz. This takes

160 ms, or 1250 samples, which are windowed using a Prolate

spheroidal window of concentration 2. The receiver signal to

noise ratio is 0 dB. Fig. 1 shows contours of the likelihood as

a function of the hypothesised source location for a conven-

tional beam former. It can be seen that the region of large

likelihood is elongated in the direction of travel of the source,

and consequently there is some ambiguity in the source loca-

tion. We would expect the Cramer Rao bound on the variance

of the location parameters in this direction to be larger than

in the direction perpendicular to the direction of travel. The

maximum of the likelihood function lies at a point roughly

halfway along the source trajectory. By contrast, Fig. 2 shows
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Fig. 3. Plot of delay and sum beam former likelihood function

for a source moving at 1.5c.

contours of the likelihood using the proposed signal model.

In this case the likelihood is a function of the source veloc-

ity as well as the source location, so the function shown is a

two dimensional slice through a peak in the four dimensional

likelihood function. The peak was found using a Newton type

algorithm. It is clear that the likelihood function shows an

unambiguous peak at the true source location, with no loss of

discrimination in the direction of travel of the source.

The second example is a single supersonic source, mov-

ing at 1.5c. The seven sensors are arranged in a horizontal

circular array of radius 50 m. The source passes horizon-

tally overhead at a height of 100 m, passing through the point

(0, 10, 100), at an angle of 0.65 radians to the x axis. The sig-

nal is the same as for the first example, with duration 40 ms,

or 320 samples. In this case the likelihood of the delay and

sum beam former shows several large peaks located near the

array elements (Fig. 3—the result is not significantly different

if d2 loss is taken into consideration). The likelihood function

for the proposed model (Fig. 4) is much less ambiguous with

a large peak near the true location of the source. The simu-

lation used for generating the sound received at the sensors

includes both forwards and backwards travelling waves (both

addition and subtraction in (5)).

5. CONCLUSIONS

We have derived expressions for the likelihood of a set of tar-

get position and velocity parameters. The expressions explic-

itly include Doppler shift of wide band signals. It has been

shown by simulation that the proposed model resolves any

ambiguity in the source locations caused by source motion.

Explicit modelling the velocity of the sources in this way

effectively doubles the dimensionality of the problem. For

tracking applications, where the velocity of the targets is al-

Fig. 4. Plot of Likelihood function based on the proposed

model for a source moving at 1.5c. The source is moving

at supersonic speed, so for the conjectured velocity repre-

sented by this plane, only certain conjectured locations are

feasible, hence the likelihood function is not defined for the

entire plane.

ready part of the model, this is an advantage rather than a

problem.

The proposed algorithm has a large processing require-

ment. It may be possible to find a more efficient algorithm

which also explicitly models the Doppler shift, but in a sim-

plified manner.
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