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ABSTRACT

We propose a particle filter tracker to track multiple maneuvering
targets using a batch of range measurements. The state update is for-
mulated through a locally linear motion model and the observability
of the state vector is proved using geometrical arguments. The data
likelihood treats the range observations as an image using template
models derived from the state update equation, and incorporates the
possibility of missing data as well as spurious range observations.
The particle filter handles multiple targets, using a partitioned state-
vector approach. The filter proposal function uses a Gaussian ap-
proximation of the full-posterior to cope with target maneuvers for
improved efficiency. By treating the range measurements as images
and using smoothness constraints, the particle filter is able to avoid
the data association problems. Computer simulations demonstrate
the performance of the tracking algorithm.

1. INTRODUCTION

Radar range tracking problem is a challenging signal processing prob-
lem that has attracted very little interest in the literature [1–3]. This
tracking problem is usually formulated using state-space models,
where the target’s motion is approximated as local linear (e.g., con-
stant velocity) and the observations are temporal snapshots of radar
range and range-rate estimates. Then, to estimate the state vector
consisting of the target’s position and velocity using range-only mea-
surements, a mobile platform must be used that executes known ma-
neuvers for system observability [2]. Otherwise, multiple beacons
must be used to track the state vector by virtue of triangulation [3].

In this paper, we present a particle filter algorithm to track a state
vector that consists of the target direction-of-arrival (DOA) θ(t), the
logarithm of the target range R(t), the target speed v(t), and the
target heading φ(t), using a batch of range-only measurements, ob-
tained at a stationary sensor. The angles are measured counterclock-
wise with respect to the x-axis. We prove that the particle filter state
vector is observable given at least three range measurements under
rotational and planar-symmetrical ambiguities. Our proof makes use
of the Stewart’s triangle theorem in geometry.

The motivation for the state vector of the particle filter is the
low power RF sensor, implemented at the University of Florida that
transmits a microwave signal to determine the range, the velocity,
and the size of the detected targets [4]. The sensor is capable of pro-
viding range estimates at 32ms intervals with a range resolution of
approximately 2m on a range-Doppler map. Up to 100m, the current
system is capable of producing range estimates for multiple ground
vehicles as well as human targets. The radar hardware is envisioned
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to have a larger detection range with hemispherical coverage in the
future. Note that the filter equations in this paper are developed using
range-only measurements so that it is also applicable to amplitude
tracking problems. Additional velocity measurements or range-rate
measurements can be easily incorporated through the data likelihood
equation via independence assumptions.

The particle filter uses a batch of range measurements to deter-
mine the state vector, based on an image template matching idea.
The template matching idea is very effective when accurate models
are available [5]. In our problem, a temporal range image is first
formed, when a batch of range measurements are received. Then,
candidate image templates are formed by using the state update func-
tion and the target state vectors. By determining the best matching
image template, the target state vectors are determined. It is assumed
that the range measurements are normally distributed around the true
range measurements, with constant data miss-probability and clutter
density.

The presence of multiple targets increases the tracking complex-
ity, because the received data must be sorted for each target. Since
the particle filter treats its range-only measurements as an image,
the data association and ordering problems are naturally alleviated.
To handle multiple targets, the particle filter uses a partitioning ap-
proach, where a particle consists of the concatenation of multiple tar-
get state vectors. We use the probabilistic data association methods
to estimate the states by summing over all the association hypothesis
weighted by the likelihood probabilities [6]. The particle filter pro-
posal function independently proposes particles for its partitions by
using a Gaussian approximation of the full posterior density for effi-
ciency. Hence, the presented particle filter is robust against the curse
of dimensionality problem [7], when the number of targets increase.

To derive the proposal function, the multi target posterior den-
sity is approximately factorized for each target. Then the Laplace’s
method is used to approximate each partition posterior by a Gaussian
around its mode [8]. We calculate the partition modes using a robust
Newton-Raphson recursion with a backtracking step size selection
that imposes smoothness constraints on the target motion [9]. This
approach is similar to the one for an angle-only tracking filter [10].

2. DATA MODELS

2.1. State Update Model

The filter state vector xt =
�

xT
1 (t), xT

2 (t), · · · , xT
K(t)

�T
consists

of the concatenation of the partition vectors xk(t) for each target,
indexed by k, k = 1, . . . , K. Each partition has the corresponding
target motion parameters xk(t) � [θk(t), Rk(t), vk(t), φk(t)]T ,
where θk(t) is the DOA, Rk(t) is the logarithm of the range, vk(t) is
the speed, and φk(t) is the heading direction. For notational conve-
nience, the logarithm of the range is used in the state vector because
the range errors are modeled multiplicative.
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Fig. 1. Observation model using batch of radar range measurements.
Note that the range measurements are not necessarily ordered. How-
ever, the image based observation approach provides a natural order-
ing, when targets are being tracked by the particle filter.

The state-update equation can be derived from the geometry im-
posed by a motion model on the state vector. In this paper, we model
the target motion with a locally constant velocity model. The result-
ing state-update equation is nonlinear:

xk(t + T ) = hT (xk(t)) + uk(t), (1)

where uk(t) ∼ N (0, Σu) with Σu = diag{σ2
θ,k, σ2

r,k, σ2
v,k, σ2

φ,k}
and hT (xk) =

�
����

tan−1
�

eR
k sin θk+Tvk sin φk

eR
k cos θk+Tvk cos φk

�
1
2

log
�
e2Rk + T 2v2

k + 2TeRkvk cos(θk − φk)
�

vk

φk

�
���	 . (2)

2.2. Observation Model

The observations yt = {yt+mτ (p)}M−1
m=0 consists of range estimates

from a radar sensor at each batch index m. This observation model
can be visualized as shown in Fig. 1. The radar returns over the
time-interval τ are used to estimate, possibly multiple, target ranges.
A batch of M such range estimates are used by the particle filter
to estimate target state every T = Mτ seconds. It is assumed that
the batch of measurements are normally distributed around the true
target ranges with variance σ2

r and a constant data miss probability
matrix κ. This batch may include spurious peaks due to clutter that
are Poisson distributed with rate λ.

We derive the data-likelihood function using the joint probabilis-
tic data association arguments found in [6]. Consider the output of
one batch period ym = yt+mτ (p), where p = 0, 1, . . . , Pm for each
m. The range measurements ym may belong to none, or some com-
bination, or all of the targets in the particle filter partitions. Hence,
define a set In that consists of n-unordered combination of all K-
partitions of the particle filter state vector: In ∈ {KCn}, where
KCn is number of ways of picking n-unordered outcomes from K
possibilities.

Each element of In has n numbers, and there are a total of KCn

elements. For example, when K = 3 and n = 2, then I2 =
{{1, 2}, {1, 3}, {2, 3}}, each element referring to subset of the in-
dividual partitions of the particle state vector. We refer to the in-

dividual elements of this set using the notation In(j), where j =
1, . . . , KCn. Hence, I2(2) = {1, 3}. Then, denote nxt(j) ∈
{xi(t)|i ∈ In(j), xi(t) ∈ xt} as a single realization from In. Us-

ing the same example above, we have 2xt(3) =



xT
2 (t), xT

3 (t)
�T

=



x̂T
1 (t), x̂T

2 (t)
�T

. The elements of the vector nxt(j) are shown,
in order, by x̂i(t) (i = 1, . . . , n), given the parameters n and j.

We denote πn,j(ym) = p(ym|nxt(j)) as the probability den-
sity function of the data, where only n range measurements belong to
the targets defined by the partitions of nxt(j). Hence, when n = 0,
all data is due to clutter:

π0,1(ym) = λPm (3)

The probability density πn,j(ym) can be calculated by noting that (i)
there are Pm!/(Pm − n)! ordered ways of choosing range measure-
ments to associate with the n-subset partitions, and (ii) the remaining
(Pm − n) range measurements are explained by the clutter:

πn,j(ym) =
(Pm − n)!λPm−n

Pm!

Pm�
p1 �=p2 �=...�=pn

n
i=1

ψt,m

�
pi

���x̂i

�
,

(4)
where the function ψ is the following Gaussian distribution:

ψt,m

�
pi

���xi

�
=

1√
2πσr

exp

�
−
�
hR

mτ (xi(t)) − yt+mτ (pi)
�2

2σ2
r

�
,

(5)
where the superscript R on the state update function h refers only to
the log-range component of the state update and σ2

r is determined by
the radar hardware capabilities.

Given the densities πn,j , the observation density function can be
constructed as a combination of all the target association hypotheses.
Hence, by adding mixtures that consist of the data permutations and
the partition combinations, we derive the observation density:

p(yt|xt) =

M−1
m=0

K�
n=0

κn,K

KCn

KCn�
j=1

πn,j(ym). (6)

In (6), the parameters κn,K ,
�

n
κn,K = 1, are the elements of a

detection (or confusion) matrix. For example, when K = 2, κ0,2

is the probability that no target range estimate is in the radar output,
whereas κ1,2 (κ2,2) implies that 1 (2) target range(s) are present in
the radar output. These fixed values have to be provided by the user.
However, they should be changed adaptively to improve robustness
of the particle filter output. For example, when two partitions k1

and k2 have close range tracks and are about to cross, we change
the confusion matrix to indicate the possibility that one of the targets
will likely be missed.

2.3. Approximate Partition Posterior Functions

In our problem of range-only multiple target tracking, the proposal
function poses difficult challenges because (i) the state vector dimen-
sion is proportional to the number of targets K, hence the number
of particles to represent posterior can increase significantly as K
increases (the curse of dimensionality), (ii) in many cases, the tar-
gets maneuver, hence full posterior approximations are required for
robust tracking, and (iii) for full posterior approximations, robustly
determining the range-only data-likelihood is rather hard.

In our problem, we can approximately factor out the tracking
posterior to exploit the computational advantage of the partitioned
sampling. Note that in our case, the target dynamics can already
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be factored out because we assume the targets are moving indepen-
dently. Unfortunately, the observation density does not factor out,
because the observed radar range data cannot be immediately asso-
ciated with any of the partitions. However, for a given partition, if we
assume that the data is only due to that partition and clutter (hence,
the range measurements corresponding to other partitions are treated
as clutter), we can do the following approximate factorization on the
observation likelihood (6): p(yt|xt) ≈�K

k=1 p(yt|xk(t)) =

K�
k=1

M−1�
m=0

��
�κ0,1λ

Pm + κ1,1λ
Pm−1

Pm�
p=1

ψt,m

�
p
���xk

�

Pm

	

� . (7)

Hence, for our problem, each approximate partition posterior is
given by

qk(xk(t)|yt, xk(t − T )) ∝ p(yt|xk(t))p(xk(t)|xk(t − T )), (8)

where p(yt|xk(t)) is given in (7). Note that (7) is not used as the
data-likelihood of the particle filter. The above approximate factor-
ization of the data-likelihood is to make use of the partitioned sam-
pling strategy to propose particles. To calculate the particle filter
weights, the full posterior uses the observation density (6).

2.4. Particle Filter Proposal Function

To capture target maneuvers effectively, we use the current observed
data to propose the filter’s particle support. The filter uses Laplace’s
method to approximate p(yt|xk(t)) in (8) and thereby derives the
partition proposal functions of the particle filter, where xk(t) ∼
gk(xk(t)|yt, xk(t−T )). Laplace’s method is an analytical approxi-
mation of probability density functions based on a Gaussian approx-
imation of the density around its mode, where the inverse Hessian
of the logarithm of the density is used as a covariance approxima-
tion [11]. It can provide adequate approximations to posteriors that
are as accurate and sometimes more accurate than the approxima-
tions based on third-order expansions of the density functions [8].

Laplace’s approximation requires the calculation of the data sta-
tistics. The Laplacian approximation is described in [10] and is im-
plemented with the Newton-Raphson recursion with backtracking
step size selection for computational efficiency. The final expression
for the partition proposal functions is given by

gk(xk(t)|yt, xk(t − T )) ∼ N (µg(k), Σg(k)) , (9)

where the Gaussian density parameters are

Σg(k) =
�
Σ−1

y (k) + Σ−1
u

−1
,

µg(k) = Σg(k)
�
Σ−1

y (k)xk,mode + Σ−1
u hT (xk(t − T ))


.

(10)

The vector xk,mode is the mode of p(yt|xk(t)), and Σ−1
y (k) is the

Hessian of p(yt|xk(t)) at xk,mode, calculated under the motion smooth-
ness constraints, as described in [10].

2.5. Observability of the State Vector

Figure 2 illustrates that it is possible to determine v and θ − φ given
three range measurements. This follows from the Stewart’s theo-
rem that can be proved by using the law of cosines on the triangles
�OAB and �OAC . Note that θ and φ can not be determined
uniquely given only the range measurements: the trajectories de-
fined by ABC, A1B1C1, and A2B2C2 can result in the same range
measurements {r1, r2, r3}.
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Fig. 2. The speed can be calculated as v = 1
τ

�
1
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(r2

1 + r2
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2 .

Triangles �O1A1C1 and �O2A2C2 are scaled versions of �OAC
that demonstrate the rotational and planar symmetric ambiguities,
respectively. They are scaled down due to lack of space.

Table 1. Simulation Parameters

N T M σr σu,θ σu,r σu,v σu,φ

200 1 10 1 1 ◦ 0.1 0.1 10 ◦

3. SIMULATIONS

This section presents simulation results to demonstrate the perfor-
mance of the range-only multiple target tracker. Both single and
multiple target tracking scenarios are considered. The synthetic range
measurement data is obtained using the constant velocity motion of
the targets. The data is perturbed using a zero mean Gaussian noise
with variance σ2

r . The simulation parameters that generated Figs. 3
and 4 are shown in Table 1.

Figure 3 shows the tracking results obtained for a single target
tracking scenario. The target moves with a constant speed of 14m/s.
The radar range measurements with clutter are input to the filter un-
ordered. The tracker is initialized with N particles generated by
adding noise (Table 1) to the true target state at t = 0s. The tracker
can associate the range measurements related to the target motion
and can provide accurate temporal estimates of the single target state.
The filter heading estimates lags the true target heading due to our
assumption of the constant velocity motion. Also, the tracking re-
sults for two targets are shown in Fig. 4. The targets move with a
constant speed of 14m/s and 14.5m/s. The particle filter was able
to resolve the data association issues at times t = 3s and t = 30s.
The motion estimates are unique due to correct initialization.

The estimates obtained using range-only measurements can be
further improved by using additional measurements. For example,
define αk = v cos (θk − φk) as the range-rate. Then, we can treat
the additional range rate measurements as an independent observa-
tion and calculate p(α|xt), α = [α1, . . . , αK ]T , by using the same
joint density association approach as (6). The range-rate measure-
ments are then incorporated at the weighting stage of the particle
filter algorithm:

w∗(i)
t = w

(i)
t−T

p(yt|x(i)
t )p(x

(i)
t |x(i)

t−T )�
k

gk(x
(i)
k (t)|yt, x

(i)
k (t − T ))

p(α|x(i)
t ), (11)
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Fig. 3. Single target tracking example. Black dots in the top left
panel are range measurements. The pentagram and the star indicate
the target starting position and the radar position, respectively.

where w∗ is the unnormalized weight. The range-rate measurements
further improve the tracking estimates as shown in Fig. 5, where a
higher observation variance σ2

r = 4 is used with σ2
α = 1.

4. CONCLUSIONS

In this paper, we present a range-only multiple target particle filter
tracker based on a batch measurement model. The radar range mea-
surement batches are treated as an image to naturally handle the data
association and ordering issues. The presence of multiple targets is
handled using a partition approach. The observation likelihoods are
calculated jointly and are assigned by using the templates created by
the state vectors and the state update equation. The current form of
the filter can also be used for amplitude tracking problems.
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Fig. 4. Multiple target tracking. The heading estimates have more
oscillations than the DOA estimates, because they are more sensitive
to the noise in the range. The filter does a good job in associating
the data with the targets because of the joint density approach.
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