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ABSTRACT

In source localization from time difference of arrival, the im-
pact of the sensor array geometry to the localization accuracy
is not well understood yet. A first rigorous analysis can be
found in [1]. It derived sufficient and necessary conditions
for optimum array geometry in terms of minimum Cramer-
Rao bound. This paper continues the above work and stud-
ies theoretically the localization accuracy of two-dimensional
sensor arrays. It addresses different issues: a) optimum vs.
uniform angular array b) near-field vs. far-field array c) using
all sensor pairs vs. those with a common reference sensor as
required from spherical position estimators. The paper ends
up with some new insights into the sensor placement problem.

1. INTRODUCTION

The classic applications of source localization from time de-
lay estimates were navigation, surveillance, and aerospace
by detecting radio waves (e.g. LORAN and DECCA) [2].
Two emerging applications are positioning of mobile termi-
nals [3, 4] and acoustic localization and tracking by using mi-
crophone arrays [5, 6]. Very often the common first step is
to estimate the time difference of arrival (TDOA) between the
source and a sensor pair [7, 8]. The second step is the source
position estimation from the noisy TDOA measurements of
different sensor pairs [9, 10, 11, 12, 13, 14].

While much research effort was spent on developing suit-
able TDOA and position estimators in the last decades, there
was no systematic study yet on the impact of the sensor array
geometry to the localization accuracy. Most known results are
obtained from computer simulations for some example sensor
positions. [1] gives a theoretic analysis of the localization ac-
curacy in terms of the Cramer-Rao bound (CRB). It derived
sufficient and necessary conditions for an unconstrained opti-
mum sensor placement which minimizes the trace of CRB.

However, many questions are still open:
• In real localization systems, the sensor placement is of-

ten subject to geometric constraints because the sensors
can be placed only in a spatially restricted region (e.g.
far-field). What is the strategy of constrained sensor
placement? What is the accuracy loss with respect to
the unconstrained optimum solution?
• For an M-element array, one basic assumption in [1] is

the use of TDOA estimates of all M(M − 1)/2 sensor
pairs. This is not satisfied for the family of spherical
position estimators [11, 13, 14] which all use M − 1

sensor pairs with a common reference sensor. What is
the effect of this smaller number of sensor pairs? Which
sensor should be chosen as the reference sensor?
• A very simple sensor placement strategy is to keep equal

angular spacing between adjacent sensors. What is the
performance loss of this uniform angular array (UAA)
with respect to the optimum one, for both unconstrained
and constrained sensor placement?

This paper gives the answers to the above questions.

2. TDOA BASED SOURCE LOCALIZATION

Assume that the sensor array consists of M sensors at the po-
sitions q

i
∈ R

D (i = 1, . . . ,M; D = 2, 3). The source position

vector is p ∈ R
D. The distance between the source and sensor

i is di(p) = ‖p − q
i
‖. The difference in the distance of the

sensors i and j to the source is di j(p) = di(p) − d j(p). Let

τi j =
1
v
di j(p) + ni j (1)

be the TDOA measured from the signals of sensor i and j.
v is the wave propagation speed and ni j is the measurement
error. Let I denote the set of N sensor pairs (i, j) whose TDOA
estimates are used in localization. By introducing the N × 1
vectors

τ =

⎡⎢⎢⎢⎢⎢⎣ τi j...
⎤⎥⎥⎥⎥⎥⎦
(i, j)∈I

, d =

⎡⎢⎢⎢⎢⎢⎣ di j
...

⎤⎥⎥⎥⎥⎥⎦
(i, j)∈I

, n =

⎡⎢⎢⎢⎢⎢⎣ ni j
...

⎤⎥⎥⎥⎥⎥⎦
(i, j)∈I

, (2)

the signal model becomes

τ =
1
v
d(p) + n. (3)

The problem of localization is to estimate the source position
vector p given {q

i
}, τ, and v.

Depending on the position estimator used, two different
sets of sensor pairs are widely used: The full TDOA set

I0 = {(i, j)|1 ≤ i < j ≤ M} (4)

includes all M(M − 1)/2 sensor pairs. In contrast, the spheri-
cal TDOA set

Is = {(1, k), . . . , (k − 1, k), (k + 1, k), . . . , (M, k)} (5)

contains only those M−1 sensor pairs with the common refer-
ence sensor k. This set is mandatory in all spherical position
estimators [11, 13, 14]. We will study both sets in the sequel.
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3. CRB AND OPTIMUM ARRAYS

In order to simplify the analysis, we assume that the noise
vector n in (3) is Gaussian with zero mean and the covariance
matrix σ2I. According to [1, 13], the CRB for the source
position vector p is J−1 = (vσ)2(GGT )−1 with

G = [g
i j
. . .](i, j)∈I , g

i j
= g

i
− g

j
, g

i
=

p − q
i

‖p − q
i
‖
. (6)

g
i
is a unit-length vector pointing from sensor i to the source.

G is a D × N matrix containing the difference vectors g
i j

in

columns. As a measure for the localization accuracy, we pro-
pose the trace of the CRB

f = tr[J−1] = (vσ)2tr[(GGT )−1]. (7)

Clearly, not only the variance σ2 of TDOA estimates but also
the direction vectors {g

i
} affect the localization accuracy. In

the literature, the term
√

tr[(GGT )−1] which only depends on
the array geometry is called the geometric dilution of preci-
sion (GDOP) [4].

In [1], we have studied how to minimize the GDOP by
an optimum sensor placement. It turns out that under the as-
sumption of full TDOA set I = I0,

f ≥ fmin = (vσ)2
D2

M2
. (8)

The equality holds if and only if
∑M

i=1 g
i
= 0 and if the D ×M

matrix g = [g
1
. . . g

M
] satisfies ggT

= (M/D)I where I is the
identity matrix. Sensor arrays satisfying these conditions are
called optimum. One example of two-dimensional (D = 2)
optimum arrays is given by

g
i
= [cosαi, sinαi]T , αi = α1 + (i − 1)δ, i = 1, . . . ,M (9)

with δ = 2π/M. More examples can be found in [1]. Below
we consider the two-dimensional case only.

4. UNIFORM ANGULAR ARRAY UNDER I0

Sensor arrays defined by (9) are called uniform angular array
(UAA) due to the constant angular spacing δ between adjacent
sensors. The angular aperture of the array is defined as

Λ = Mδ. (10)

Clearly, the previous optimum array is a UAA with the full
angular apertureΛ = 2π. The source is surrounded by sensors
(near-field) and there are no sensor placement constraints. In
far-field problems, however, the source is far away from the
sensors (with respect to the sensor spacing) and the angular
aperture is much smaller. In this section, we investigate the
localization accuracy of UAA with a reduced angular aperture
0 < Λ ≤ 2π when using the full TDOA set I0.

By combining Eqs. (4), (6), (7), and (9), we obtain after
some calculations:

f0(Λ,M) = f0,min(M) · L0(Λ,M),

L0(Λ,M) =
1 − ρ22

(1 − ρ1)(1 + ρ1 − 2ρ22)
, (11)

ρ1 = ρ(Λ) =
sin(Λ)

M sin(Λ/M)
, ρ2 = ρ(Λ/2).

f0(Λ,M) describes the localization accuracy of an M-element
UAA with the angular aperture Λ based on I0. f0,min(M) de-
notes the minimum value of f0(Λ,M) given in (8). Their ratio
L0(Λ,M) characterizes the accuracy loss due to a reduced an-
gular aperture. It is called the loss function.
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Fig. 1. Localization accuracy of UAA with full TDOA set I0

Figure 1 shows f0(Λ,M) for 0 < Λ ≤ 2π and M =

3, 4, 5, 8. Obviously, f0(Λ,M) decreases (the localization ac-
curacy increases) for increasingΛ and M. A function analysis
of f0(Λ,M) at different values of Λ and M reveals the follow-
ing properties:

1. If Λ = 2π, L0(2π,M) = 1, i.e. the UAA is optimum.
2. If Λ is close to 2π and M � 1,

L0(Λ,M) ≈ 1 + 2

(
1 −
Λ

2π

)2
. (12)

L0(Λ,M) decreases slowly as Λ approaches 2π.
3. If Λ = π,

L0(π,M) =
[M sin( π2M )]2 − 1

[M sin( π2M )]2 − 2
. (13)

In this case, the loss function decreases monotonously
from L0(π, 3) = 5 to L0(π,∞) ≈ 3.1 for an increasing
number of sensors M.

4. If Λ � 1, we obtain the following approximation

L0(Λ,M) ≈
180

(1 − 1
M2 )(1 − 4

M2 )Λ4

M�1
≈

180
Λ4
. (14)

The accuracy loss increases dramatically (∼ 1/Λ4) for
a decreasing angular aperture Λ.

5. If M � 1, the loss function

L0(Λ,M) ≈ L0(Λ,∞)

=
1 − si2(Λ/2)

[1 − si(Λ)][1 + si(Λ) − 2si2(Λ/2)]
(15)
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with si(x) = sin(x)/x is nearly independent of M. In
this case, f0(Λ,M) ∼ 1/M2 for all Λ. Table 1 shows
some values of L0(Λ,∞). It helps us to better under-
stand the contribution of the angular aperture to the lo-
calization accuracy. Roughly spoken, “the first 90◦ is
much more important than the last 90◦”. Increasing the
angular aperture from Λ = 0 to Λ = π/2 dramatically
improves the accuracy. In contrast, the improvement is
vanishing when increasing Λ from 3π/2 to 2π.

Λ 0 π/4 π/2 π 3π/2 2π
L0(Λ,∞) ∞ 488.6 33.7 3.1 1.2 1

Table 1. Accuracy loss as a function of the angular aperture
Λ when using the full TDOA set I0

5. UNIFORM ANGULAR ARRAY UNDER IS

In this section, we perform an accuracy analysis of UAA for
the spherical TDOA set Is in (5). This means, only M − 1
TDOAs relative to the reference sensor k are used in localiza-
tion. Due to the reduced number of sensor pairs, we expect
a performance loss in terms of the CRB [1]. The question is
how much? One additional question concerns the choice of
the reference sensor k. Below we first study the case k = 1.
By combining Eqs. (5), (6), (7), and (9), we obtain after some
lengthy calculations:

Z =
3 − ρ21 − 2ρ22

4
−

(ρ1 − ρ22)

2
cosΛ − ρ2(1 − ρ1) cos

Λ

2
,

fs,1(Λ,M) =
(vσ)2

M − 1
·
2(1 − ρ2 cos Λ2 )

Z
, (16)

ρ1 = ρ(Λ) =
sin( M−1

M Λ)

(M − 1) sin( 1
MΛ)
, ρ2 = ρ(Λ/2).

fs,k(Λ,M) is the trace of CRB based on Is with the refer-
ence sensor k. Figure 2 plots fs,1(Λ,M) against Λ for M =
3, 4, 5, 8.
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Fig. 2. Localization accuracy of UAA with spherical set Is

Again, we analyse fs,1(Λ,M) in different regions of (Λ,M):
1. At the full angular aperture Λ = 2π,

fs,1(2π,M) = (vσ)2
8

3M
. (17)

This value is larger than f0(2π,M) = (vσ)2(2/M)2 in
(8) as we used the full TDOA set I0. In particular,
fs,1(2π,M) decreases with 1/M while f0(2π,M) decreases
much faster with 1/M2. This is clearly due to the fact
that Is contains M − 1 while I0 contains M(M − 1)/2
TDOA measurements.

2. If Λ = π, we obtain

fs,1(π,M) = (vσ)2
8(M − 1)

3M2 − 4M − 4 cot2( π2M )
. (18)

For easy comparison with the full aperture case, we de-
fine the ratio

r(Λ,M) = fs,1(Λ,M)/ fs,1(2π,M). (19)

It turns out that r(π,M) decreases monotonously from
r(π, 3) = 6 to r(π,∞) ≈ 2.2 as M increases. In other
words, there is only a moderate improvement when we
increase the angular aperture beyond π.

3. If Λ � 1 and M � 1,

fs,1(Λ,M) ≈ (vσ)2
320
MΛ4

, r(Λ,M) ≈
120
Λ4
. (20)

For a low aperture UAA, each small increase of Λ re-
sults in a huge improvement of the localization accu-
racy.

4. If M � 1, ρ1 and ρ2 in (16) simplify to si(Λ) and
si(Λ/2). They are independent of M. This implies
fs,1(Λ,M) ∼ 1/M for all Λ. Table 2 shows the ratio
r(Λ,∞) for some values of Λ. Interestingly, r(3π/2,∞)
is smaller than one, indicating that the aperture 3π/2 is
even better than the full aperture 2π. This is not sur-
prising because, in contrast to I0, the full aperture UAA
under Is is not optimum. Optimum arrays for the spher-
ical case Is are described in the next section.

Λ 0 π/4 π/2 π 3π/2 2π
r(Λ,∞) ∞ 326.2 22.6 2.2 0.96 1

Table 2. Impact of angular aperture on localization accuracy
for the spherical TDOA set Is

Finally, we study the performance loss of Is in comparison
to I0 and the effect of the reference sensor k. For this purpose,
we consider the ratio of f between Is and I0

Rk(Λ,M) =
fs,k(Λ,M)
f0(Λ,M)

. (21)

For reasons of symmetry, we only consider values of k not
larger than (M + 1)/2. Figure 3 shows Rk(Λ,M) for M =

3, 5, 7, 9 and different values of k. We observe:
• The performance loss of using Is instead of I0 is in the

order M. This is mainly because f0(Λ,M) ∼ 1/M2 and
fs,k(Λ,M) ∼ 1/M.

• This loss has a weak dependence on Λ.
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• The choice of the reference sensor k also impacts the
CRB. For small aperture values, the middle sensors (k =
M
2 or M+1

2 ) seem to be optimum. For large aperture, the
first sensor (k = 1) seems to be the best choice. The
boundary between “small’ and “large” aperture (the ver-
tical bars in the second row of Figure 3) shifts to the left
as M increases. Nevertheless, the overall effect of the
choice of the reference sensor is quite limited (at max.
factor 2.5 in Fig. 3). It becomes less important for in-
creasing Λ and M.
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Fig. 3. Accuracy loss of Is in comparison to I0

6. OPTIMUM ARRAYS UNDER IS

The last open question concerns optimumarrays under Is which
minimize the trace of CRB f in (7). Due to limited space, we
only present the results without going into details. We assume
again that the sensor array geometry is characterized by the M
direction vectors g

i
= [cosαi, sinαi]T . If M is odd, the op-

timum array consists of one reference sensor at the angle α0

and two clusters of each (M − 1)/2 sensors at the angle

α0 ± β with β = 2 arcsin
√

2/3 ≈ 109.47◦. (22)

The corresponding minimum value of f is

fs,min = (vσ)2
27

16(M − 1)
. (23)

Note that such a near-field array is realizable because sensors
having the same angle with respect to the source may still
have different distances to the source. If M is even, the opti-
mum array consists of, in addition to the reference sensor, two
clusters of each M/2 and M/2− 1 sensors at the angle α0 + β1
and α0 − β2 where β1 and β2 deviate slightly (depending on
M) from the value in (22). Asymptotically, if M approaches
infinity, an even-M optimum array also converges to the limit
in (22) and (23).

It is interesting to compare the localization accuracy of the
full aperture UAA in (17) and the clustered optimum array in
(23), both under the spherical TDOA set Is. Their ratio

fs,1(2π,M)
fs,min

=
128
81

M − 1
M

≈ 1.58 for M � 1 (24)

shows only a moderate benefit of the optimum array in com-
parison to the easily designed full aperture UAA.

7. REFERENCES

[1] B. Yang and J. Scheuing, “Cramer-Rao bound and opti-
mum sensor array for source localization from time dif-
ferences of arrival,” in Proc. IEEE ICASSP, 2005, vol. 4,
pp. 961–964.

[2] M. Kayton and W. R. Freid, Avionics Navigation Sys-
tems, Wiley, New York, 1969.

[3] T. S. Rappaport, J. H. Reed, and D. Woerner, “Position
location using wireless communications on highways of
the future,” IEEE Communications Magazine, vol. 34,
pp. 33–41, 1996.

[4] M. A. Spririto, “On the accuracy of cellular mobile sta-
tion location estimation,” IEEE Trans. Vehicular Tech-
nology, vol. 50, pp. 674–685, 2001.

[5] M. Brandstein and D. Ward, Eds., Microphone Arrays,
Springer-Verlag, 2001.

[6] Y. Huang and J. Benesty, Eds., Audio Signal Processing
for Next-Generation Multimedia Communication Sys-
tems, Kluwer Academic Publishers, 2004.

[7] C. H. Knapp and G. C. Carter, “The generalized correla-
tion method for estimation of time delay,” IEEE Trans.
Acoustics, Speech, and Signal Processing, vol. 24, pp.
320–327, 1976.

[8] Y. Huang, J. Benesty, and G. W. Elko, “Adaptive eigen-
value decomposition algorithm for realtime acoustic
source localization system,” in Proc. IEEE ICASSP,
1999, pp. 937–940.

[9] R. O. Schmidt, “A new approach to geometry of range
difference location,” IEEE Trans. Aerospace and Elec-
tron. Systems, vol. 8, pp. 821–835, 1972.

[10] W. H. Foy, “Position-location solutions by Taylor-series
estimation,” IEEE Trans. Aerospace and Electron. Sys-
tems, vol. 12, pp. 187–194, 1976.

[11] J. O. Smith and J. S. Abel, “Closed-form least-squares
source location estimation from range-difference mea-
surements,” IEEE Trans. Acoustics, Speech, and Signal
Processing, vol. 35, pp. 1661–1669, 1987.

[12] J. S. Abel, “A divdide and conquer approach to least-
squares estimation,” IEEE Trans. Aerospace and Elec-
tron. Systems, vol. 26, pp. 423–427, 1990.

[13] Y. T. Chan and K. C. Ho, “A simple and efficient es-
timator for hyperbolic location,” IEEE Trans. Signal
Processing, vol. 42, pp. 1905–1915, 1994.

[14] Y. Huang, J. Benesty, et al., “Real-time passive source
localization: A practial linear-correction least squares
approach,” IEEE Trans. Speech and Audio Processing,
vol. 9, pp. 943–956, 2001.

IV  904


