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ABSTRACT

We investigate a new approach for the problem of source 

separation/classification of non-orthogonal, non-stationary noisy 

signals impinging on an array of sensors. We propose a solution to 

the problem when the contaminating noise is temporally and 

spatially correlated. The observations are projected onto a nested 

set of multiresolution spaces prior to classical eigendecomposition. 

An inherent invariance property of the signal subspace is observed 

in a subset of the multiresolution spaces that depends on the level 

of approximation expressed by the orthogonal basis. This feature, 

among others revealed by the algorithm, is eventually used to 

separate the correlated signal sources in the context of ‘best basis’ 

selection. The technique shows robustness to source non-

stationarity as well as anisotropic properties of the channel 

characteristics under no constraints on the array design. We 

illustrate the high performance of the technique on simulated and 

experimental multichannel neurophysiological data measurements. 

1. INTRODUCTION 

Multichannel signal processing aims at fusing data collected at 

several sensors in order to carry out an estimation task of signal 

sources  [1]. Many array signal processing algorithms rely on 

eigenstructure subspace methods performed in the time domain 

 [2], in the frequency domain  [3], or in the composite time-

frequency domain  [4]. Regardless of which domain is used, 

eigenstructure based algorithms offer an optimal solution to many 

array processing applications provided that the assumptions about 

the underlying signal and noise processes are appropriate (e.g.: 

independent source signals, uncorrelated signals and noise, 

spatially and temporally white noise processes, etc…).  

For some applications, many of these assumptions cannot be 

intrinsically made, such that when the sources have correlated 

waveform shapes and the noise is correlated among sensors, or 

when the propagating medium is anisotropic. Many approaches 

have been suggested in the literature to mitigate the effects of 

unknown spatially correlated noise fields to enable better source 

separation of the array mixtures and showed various degrees of 

success  [5]- [7]. Nevertheless, the particular case where signal 

sources are non-orthogonal and may inherently possess 

considerable correlation with the noise has not received 

considerable attention. This situation may occur, for example, 

when the noise is the result of the presence of an exceptionally 

large number of weak sources that generate signal waveforms 

identical to those of the desired ones.

The objective of this paper is to develop a new technique for 

separating and potentially classifying a number of correlated 

sources impinging on an array of sensors in the presence of strong 

correlated noise. In that respect, we make the following 

assumptions about the problem at hand: 

1- The observations are a mixture of wide-band signals and the 

array mixing matrix is unknown but time invariant. 

2- Sources are non-orthogonal, with signals that are transient-

like, and may be fully or partially coherent across the array. 

3- The number of sources within the observation window is 

unknown and is less than the number of channels. 

4- The noise is a mixture of two components:

(a) Zero mean iid Gaussian white noise. 

(b) Temporally and spatially correlated noise component with 

unknown covariance resulting from numerous interfering 

weak sources.

2. THEORY 

A plausible model of P correlated signals over the N samples 

time interval assumes that the pth source signal can be expressed in 
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If the P source signals impinge on an array of M sensors, the nth

snapshot of the array can be expressed by the 1M  vector
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where  denotes a full rank time invariant mixing matrix,  

and  denotes the nth row of the convolution matrix operator 
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As mentioned previously, it is assumed that neither  nor 

are known, .

A pH
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From linear algebra theory, it is known that the matrix 

would be rank deficient, since is rank deficient. The column 

space of , is spanned by all the linearly independent columns of 

, while the row space of  is spanned by the rows of .

Identifying the signal subspace by spectral factorization of 

using Singular Value Decomposition (SVD) yields  
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where the first P singular values along the diagonal of  are 

nonzero and correspond to the P leftmost columns of  that 

span the subspace , spanned by the columns of . The 

remaining 
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PM  eigenvalues are zero with probability one. This 

analysis is guaranteed to separate the sources provided they are 

mutually orthogonal and fails otherwise because of the rank 

deficiency of . In the presence of additive noise, the observation 

matrix  expressed as 
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where  denotes a zero-mean additive noise with 

arbitrary spatial and temporal covariances  and 

, respectively. Similar to (4), using SVD    
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where m  denotes the mth singular value corresponding to the mth

diagonal entry in . The eigenvectors  

 span the row space of Y , which is 

now full rank due to noise presence. On the other hand, the 

rightmost 
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When the source signals are non-orthogonal, each singular 

value i  and the corresponding eigenvector  do not correspond 

to a single source. This can be seen by considering the (i,j)th entry 

of the signal covariance given by  
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where  expresses the unknown correlation coefficient 

between the ith and jth sources. The ith eigenvalue of the spatial 

covariance  will correspond to  
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where is the ith eigenvalue of . Thus, 2

iz ZR i is a weighted 

sum of the variances of the sources that have nonzero projection 

along the direction of eigenvector . Therefore, the correlation of 

the sources causes a significant ambiguity problem in signal 

subspace determination. Additionally, when the SNR is small, or 

when the noise is cross-correlated with the signal, leakage occurs 

between the directions and  in the form of a fuzzy gap 

between the signal singular values and those of the noise.
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3. ORTHOGONAL TRANSFORMATION 

The objective is to attempt to reduce the contribution of the 

unknown correlation coefficient terms ij  on the eigenvalues of 

the noise-free observation matrix , as well as enhance the 

separation gap between the signal and noise singular values in the 

noisy observation matrix Y . Our approach relies on exploiting an 

alternative solution to signal subspace determination. Recall from 

equation (4), the signal subspace is P dimensional that can be 

determined from the span of the columns of . Alternatively, it 

can be determined from the P rows of  if signal correlation is 

minimized by appropriate signal subspace rotation. If the rotation 

does not alter the span of the signal subspace , then it can be 

used as a mean to separate the correlated sources. Subspace 

rotation can be achieved by a wide range of orthogonal 

transformations. The idea is to find a particular orthogonal 

transformation that minimizes the signal correlation, subject to 

preservation of the signal subspace . This can be conveniently 

achieved if sparse representation of the signals is obtained. 
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In the case of unknown signals, sparse representation can be 

obtained using a multiresolution orthogonal transformation by 

means of the Discrete Wavelet Transform (DWT)  [8] [9] and its 

overcomplete representation, the Discrete Wavelet Packet 

Transform (DWPT)  [10], particularly when the source signal  is 

unknown. Additionally, the denoising property of the DWT makes 

it very powerful in suppressing noise by simple thresholding 

1s

 [10] [12]. Let’s denote by  a  linear DWT operator 

(convolution matrix) for subband j, where 
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matrix , obtained through orthogonal transformation of 

equation (5) with  can be decomposed using SVD to yield 
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where  and  expresses the projection of the signal and noise 

matrices onto the space 

jS jZ

j  of all piecewise smooth functions in 

)(L2 . These are spanned by the integer-translated and dilated 

copies  of a scaling function ).2(2 2/
, kjj

def

kj  that has 

compact support  [9]. Note that the unknown mixing matrix  was 

assumed transformation independent and thus remains invariant

under the transformation operator. This assumption is valid if the 

signal mixing is stationary within the analysis interval.  
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The outer products form in (9) allows us to observe that the 

span of  directly impacts the span of the column space of .

This is because the pth row of the matrix  can be expressed as 
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Equation (10) expresses the projection of the sources onto the 

space j  in terms of the unknown parameters . Furthermore, 

it establishes the relation between the row space of  and that of 

 using the transformed convolution operator . Specifically, 

If   spans the null space of , then the projection  will 
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be zero. Conversely, if  spans the range space of , then it 

is guaranteed that  will belong to the row space of , and 

consequently will have a corresponding eigenvector in the matrix 

.
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To be more specific, let us denote by  the dictionary of 

basis obtained for L decomposition levels ( subbands).

Now consider the simple illustration in Figure 1, in which the 

dictionary has only three basis, ,  and . The projections of 

the row space of , denoted , and the row space of ,

denoted , are indicated by the components  and ,

while  is zero. Similarly,  results in  that 

represents the correlated noise component, and  that 

represents the white noise component. In turn,  results in 

 and , while  results in  . It is thus 

assumed that  does not represent any of the signal sources, 

i.e., . Careful examination of these 

projections yields the following: 
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(a) Any signal source that belongs to  is dominant over 

noise projections .
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(b) Any noise component that belong to  is dominant over 

the signal projection .
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(c) Any noise projection that belong to  is fully accounted for 

by the basis .
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Generalizing to an arbitrary size dictionary, the subset of basis 

following (a) is interpreted as the collection of wavelet basis that 

best represent the signal sources for which  spans the range 

space of , i.e. . For each of these source, the set 

will be denoted , with cardinality . The signal subspace 

spanned by the principal eigenvectors in , denoted 
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be restricted to those basis that belong to . Accordingly, the 

signal subspace dimension in subband j, denoted , will be upper 

bounded by 

p

jP

P .

To identify the signal subspace in the context of source 

separation, we can interpret the above findings in two different 

ways: 

1. Within subband j, the source separation process amounts to 

finding the signal eigenvalues corresponding to the group of 

sources that possess nonzero correlation with the jth wavelet basis. 

These will be ranked in decreasing order of magnitude as 
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2. Given a specific source indexed by , the source 

classification process amounts to specifying an operator , that 

finds the set of subband indices among all 

},...,1{* Pp

*pB

}{Jj  for which 

there exist a nonzero eigenvector  that corresponds to an 

invariant eigenvector . This set of basis, now denoted 

j
p*v

j
p*u

}{* Jp  will constitute the ‘best basis’ representing the 

source .*p

The last interpretation falls under the class of best basis 

selection schemes, originally introduced in  [10]. In that context, 

best signal representation is obtained by defining a cost function 

for pruning the binary tree. In  [10], it was suggested to prune the 

tree by minimizing an entropy cost function between the parent 

and children nodes. The cost of each node in the binary tree is 

compared to the cost of its children. A parent node is marked as a 

terminal node if it yields a lower cost than its children’s cost. 

Other cost functions were suggested, such as Mean Square Error 

(MSE) minimization  [11]. In our context, the cost function can be 

expressed in terms of the invariance property of the signal 

subspace jA  of children nodes compared to their parent node. 

Specifically, a child node is considered a candidate for further 

splitting if the  norm of the distance between the signal 

subspace in the parent node and that of the child is minimized, i.e.  
2

2
min),( Child

p
Parent
p

j p

pjCost uu (13)

The cost definition ensures that children nodes that do not have a 

“similar” signal subspace to that of the parent, they will not be 

marked as candidates for further splitting.  

4. RESULTS 

We tested the proposed approach on multichannel 

neurophysiological recordings obtained with microelectrode arrays 

implanted in the brain. The signals of interest consist of neural 

activity in the form of rapid, short-duration transient waveforms 

elicited by a small population of neurons in the vicinity of the 

electrode array. The correlated noise component is the spontaneous 

and stimulus-driven activity from hundreds of neurons in the 

background that are far from the array, and white noise from the 

signal conditioning electronics. Characteristics obtained from the 

algorithm are illustrated in Figure 2 for a single source waveform 

sampled along the array. In Figure 3, a complex waveform (middle 

panel) from two fully coherent sources (left panel) is demonstrated 
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Figure 1: Projection of the signal and noise subspaces , and 

, respectively, onto a fixed orthogonal basis space. The space 

is assumed to be completely spanned by three orthogonal 

basis,{ , {  and {  for clarity.  
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across the 4-channel array. The features obtained (right panel) are 

indicated by the two distinct sets of the principal eigenvector in the 

best basis nodes, demonstrating the separation ability of the 

algorithm. Invariance to signal fading is illustrated in Figure 4, in 

which ten consecutive events from one source were simulated to 

undergo ~45% decrease in energy over time. In the context of 

neurophysiology, this is a typical characteristic of the extracellular 

space  [14] that makes the separation of multi-neuron signals a 

formidable task. As can be seen, this is efficiently captured by the 

percentage change in the principal eigenvalue -relative to that of 

the first event- in the best basis that characterize the signal.  

5. CONCLUSION 

The analysis carried out in this work provides the mathematical 

basis for the notion of invariance of signal subspace under 

orthogonal transformation in sensor array processing. We 

described an intuitive and efficient algorithm best suited for blind 

source separation and classification in multichannel signal 

environments when source signals are linearly dependent and 

exhibit temporal nonstationarity in the presence of strong spatially 

and temporally correlated noise fields. In the absence of 

knowledge of the mixing matrix, the correlation among source 

signals complicates the source separation problem, especially in 

colored noise. It is obvious that the wavelet basis choice is of 

crucial importance to the separation process. When the signal or 

the channel parameters are partially available, they can be used to 

design admissible wavelets to maximize a classification metric. 

Ideally, the wavelet basis should be selected to provide maximum 

separability between different sources. Extension beyond second 

order statistics is also feasible and is currently under investigation.  
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Figure 2: Feature set for a single source (wavelet basis = symlet4)
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