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ABSTRACT
Environment reconstruction through sampling is a difficult task and

usually requires a large amount of resources. In this paper, a sam-

pling technique is presented that approaches exhaustive sampling

performance with only sparse samples. The goal is achieved by

combining information from sensors of different types and resolu-

tions. Image processing techniques are employed to extract global

information. This information is passed on to the local sensors to op-

timize the number and locations of low-level sampling points. The

sampled values are then applied back to the image to reconstruct the

whole field. The technique is tested in the lab setup and shown to

achieve a better result than traditional sampling methods.

1. INTRODUCTION

Recent advances in sensing technology have made distributed sen-

sors an important tool in environmental monitoring. Heterogeneous

fields attract more attention because they are more often encountered

in the real world. Results [1][2][3] show that reconstruction of a field

with a moderate number of discontinuities requires a large number of

samples to achieve reasonable accuracy. Sensors incorporating lim-

ited mobility proposed by [4] enable adaptive sampling techniques

[5][6]. This method reduced the amount of resources. But when the

field shows fast temporal variation in addition to spatial heterogene-

ity, the performance of adaptive sampling can degrade significantly.

Hence, better sampling techniques are needed for such fields.

Many environmental phenomena can be sampled by different

types of sensors. For example, thermometers and infrared imagers

can both measure temperature. Generally, different types of sensors

also provide different sampling range and resolution. We developed

a sampling technique that combines the measurements from differ-

ent sensor modes, which will be referred to as multiscale sampling.

Our hypothesis is that a combination of sparsely allocated sensors of

different modes will yield the performance of exhaustive sampling.

We focus on the application of sampling the incident sunlight

intensity under a forest canopy. The reasons are two-fold. First, light

intensity is very important in biology for the study of photosynthesis

[7][8]. Second, the field of incident sunlight intensity under a canopy

demonstrates a very high spatiotemporal frequency. Fig. 1 shows the

shadow made by a tree in an area of about 100cm × 80cm and its

corresponding spatial distribution of light intensity. Around noon,

the shade generated by a branch 3 meters above ground moves half

a meter away from its original position within half an hour. This

shows the fast temporal variation of the field. If sensors only collect
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local data, as they do in previous works [1][3], many sensors will be

required to achieve high reconstruction accuracy.
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(b) Spatial distribution

Fig. 1. Spatial distribution of light intensity under canopy.

In [9], two different modes of data are obtained to estimate the

snow water distribution. But the results from the two different scales

are only compared. No fusion is performed to improve the results.

Multiscale estimation and data fusion for the random field has been

studied in [10] and used in geoscience applications [11][12]. These

studies rely on some established model to perform Kalman filtering

and data fusion. Though there are models for the distribution of sun-

flecks [13], statistical models for the distribution of sunlight intensity

under a canopy are still under study. Hence, we developed a direct

data fusion algorithm to combine measurements from different res-

olutions and modes.

2. MULTISCALE SENSING

Based on the characteristics of the field we studied, we selected cam-

eras and Photosynthetic Active Radiation (PAR) sensors to provide

two scales of observations [14]. Images from an overhead camera

present global scale information. An actuated mobile PAR sensor

collects local information. The camera has the advantage of fast

sampling. However, it can only measure the reflected light intensity,

affected by the ground reflectivity. Generally the reflected light in-

tensity has a nonlinear relationship with the incident intensity. Addi-

tionally, the camera’s characteristic curve of recorded light intensity

vs. receiving light intensity is nonlinear. On the other hand, the PAR

sensors can measure the incident light intensity more accurately, but

the range of the areas they measure is limited and the mobile actu-

ator has a slow movement rate. Our approach is to combine their

measurements to overcome their respective shortcomings.

2.1. Field Model

The maximum light intensity appears in the area the sun illuminates

directly, which we will refer to as sunflecks. The minimum light

intensity appears in the area of deep shade. We will refer to such
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Fig. 2. Penumbral effect. (a)Basic penumbral geometry. (b)Two

dimensional view of enlarged penumbra

areas as shadows. Based on the image from the camera, we partition

the whole field into sunflecks, shadows and transition area.

The formation of the transition area is mainly due to the optical

principle that when light originating from a non-point source passes

through a circular aperture, the image it generates is composed of a

bright center portion circumscribed by a shadow edge. This effect is

known in biology as the penumbral effect [13] and is illustrated in

Fig. 2 a). Based on the geometry of the sun, the light intensity at a

point x in the transition area is (assuming the maximum intensity is

1. See Fig. 2 b)):

Ix = 1 +
u
√

1 − u2 − cos−1u

π
(1)

where u = h/Rs

h =
(x − x2+x1

2
)(Ds − d) +

R2
s

(Ds−d)2−R2
s
Ld�

(x2−x1)2

4
(Ds−d)2

R2
s

+
(2x−x2−x1)Ld(Ds−d)−d2R2

s
(Ds−d)2−R2

s

and the penumbra size is:

x2 − x1 = 2dRs � (Ds − d)2 − (L2 − R2
s)

(Ds − d)2 − R2
s

(2)

Ds is the distance from the sun to the earth and Rs is the radius of

the sun.

The equation above is applicable when there is only one large

gap. When the gap is smaller than a certain size, the intensity in

the center will not reach maximum intensity. If there are multiple

gaps that are close to each other, the transition area generated by

each gap may overlap. Hence, we further classify the transition area

into three categories: a) full penumbra; b) partial penumbra due to a

small gap; c) partial penumbra due to multiple gaps. Fig. 3 illustrates

these three scenarios and their corresponding intensity curves.
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Fig. 3. Penubra classification and their corresponding intensity curve

Ix: 1) full penumbra; 2) partial penumbra due to small gap; 3) partial

penumbra due to multiple gaps.

3. RECONSTRUCTION ALGORITHMS

The light intensity field keeps changing and can be treated as a ran-

dom process in time. So it is meaningless to reconstruct only a snap-

shot of the field. Instead, we assume the field is static for a short

time interval and obtain the mean field over the time window.

We divide time into epochs. At the beginning of each epoch, sev-

eral images are taken to obtain the mean reflected intensity. An im-

age processing procedure is performed on the mean image to select

sampling points. Then the mobile PAR sensor moves to the points

picked out from the image to get the measurement of incident light

intensity. At this stage, we assume that the epoch is long enough so

that all the required data can be collected within the epoch. Hence

the mobile sensor just moves sequentially to each point without spe-

cial planning. The field is reconstructed by combining the infor-

mation from the mean image and the samples. The outline of the

procedure is given below.

Field Reconstruction

1. Obtain mean image at the beginning of a time epoch.

2. Partition the image into homogeneous subfields.

3. Check the smoothness of each subfield.

4. Sample smooth fields and reconstruct through interpolation.

5. Locate and reconstruct penumbra.

6. Reconstruct the subfields left over.

3.1. Field Partition

The heterogenous field can be partitioned into smaller homogeneous

subfields. Each subfield requires a different number of samples to

reach a certain reconstruction fidelity depending on its spatial fre-

quency. By allocating less samples to the smoother subfields, we

can reduce the total number of samples significantly.

The camera provides the information needed to perform the field

partition. When the ground reflectivity is uniform, the reflective light

intensity falls into the same category as the incident light intensity,

i.e, the sunflecks, shadows and transition areas in the image corre-

spond to the sunflecks, shadows and transition areas in the incident

light field. These different intensity categories create different fea-

tures in the image. When an object on the ground changes the ground

reflectivity, it also adds different features such as different colors in

the image. Therefore, we can segment the image based on the fea-

tures in the image to fulfill the field partition process.

When segmenting the image, no previous knowledge is assumed

about features in the image. Instead, the features are recognized

from the statistical distribution of pixels’ values. Pixels with simi-

lar features form a cluster in the pixel value distribution. Peaks in

the distribution (i.e., the cluster center) are located through the mean

shift algorithm [15]. The algorithm presented in [16] is applied to

improve the processing speed. Pixels having strong features are al-

located to feature clusters. Pixels having weak features are grouped

together and are treated as a special cluster.

Once all the pixels are allocated to certain feature clusters, all the

connected pixels in the same cluster are recognized as an object. In

this way, the image is segmented into objects. Objects smaller than

a certain size are treated as noise and merged into larger objects.

Sunflecks and shadows usually exhibit strong features in the image

while transition areas exhibit weak features. Hence, after the image

segmentation step, the field is partitioned into smaller homogeneous

subfields in the three categories.

3.2. Field Reconstruction

Even though the camera cannot measure the incident light intensity

accurately, it can provide a good indication on the smoothness of

each subfield. The camera response curve is linear in the middle in-
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tensity range and sublinear in the low and high intensity range. In

the image segmentation step, subfields in different intensity ranges

are separated since they show different features. A smooth subfield

in the middle intensity range in the image indicates that the incident

light subfield is also smooth. For the subfield in the low intensity

range, pixel intensity value in the image is calibrated based on the

camera response curve. Then the variance of pixel intensity is com-

puted to check the smoothness of the subfield. In these two types of

subfields, if the variance of the pixel intensity value is smaller than a

threshold, samples are taken randomly by PAR sensors within each

subfield without further processing. The number of samples required

is determined by the variance and the subfield size.

The photosynthesis process saturates at a certain light intensity

level (depending on the plants, the saturation light intensity is dif-

ferent). Experimental results show that light intensity in sunflecks

is above the saturation intensity most of the time during the day.

Subfields in the high intensity range in the image result from two

different scenes: a) a sunfleck; b) an object with strong reflectivity

such as glass. Hence, one sample is taken first by a PAR sensor in

the subfield. If it is above the saturation light intensity, the subfield

is claimed to be a sunfleck and the whole subfield is assumed to be

above the saturation intensity. No further samples are taken in the

subfield and the intensity value of the sample is used as the inten-

sity value of all pixels. If the sample intensity value is below the

saturation intensity, the same reconstruction procedure as the sub-

field in the low intensity range is applied to this subfield. Since the

interpolation method is not the focus of our current research, linear

interpolation is applied for simplicity. Better interpolation technique

can be employed later to further improve the results.

A portion of the remaining subfields is penumbra. The num-

ber of samples required can be reduced substantially by applying the

penumbra model developed in section 2. Since penumbra form from

partial obscurity of the sun, they mainly exist around the sunflecks.

So we focus our attention on subfields surrounding sunflecks. As

shown in equation (2), the penumbra size only depends on the sun

angle and the distance between the gap generating the penumbra and

ground. When the sun angle is fixed, the size of the penumbra gen-

erated by a gap is also fixed. Pixels in the penumbra with the same

distance to the boundary of a sunfleck have the same intensity. In-

tensity in full penumbra is highly linear. So linear interpolation is

applied after one sample at the boundary of the penumbra and one

sample at the boundary of the sunfleck are taken. By sampling a

whole line connecting the boundary of the sunfleck and the bound-

ary of the penumbra, light intensity in the partial penumbra can be

obtained. The procedure is illustrated in the following pseudocode.

4. EXPERIMENTAL RESULTS

Due to the difficulties in collecting ground truth data in the real field,

a simulated field in a lab is setup to validate our hypothesis. A lamp

functioning as the sun projects light on a screen. Between the lamp

and the screen, obstacles are placed to cast shadows. The screen has

uniform reflectivity. To simulate the nonuniform reflectivity of the

ground, the screen is decorated with objects of various materials. At

this stage, we assume that the camera domain and the PAR sensor

domain are perfectly aligned so that each pixel in the image corre-

sponds to a point in the PAR sensor domain. An image of the screen

without decoration on it is also taken. The image is then corrected

against the camera response curve. Pixel intensity values in such an

image are proportional to the incident light intensity and can be used

as ground truth.

Fig. 4(a) shows light field in the lab setup. The corresponding

Pseudocode description of nonsmooth field reconstruction

for eachnonsmooth subfield {
find neighboring sunflecks

for each neighbor sunfleck S {
Dilate S until a shadow is encountered or the whole

subfield is included. Denote the portion of the

subfield included by F

Record distance of each pixel in F to boundary of S

Subdivide F into areas neighboring to same patches*

for each area A {
if it is full penumbra

{Sample at boundaries and linearly interpolate}
else {Sample along a radial line** in F}
Reconstruct A

}
}

}
Interpolate the reconstructed pixels to fill up the whole field

*Patches refer to the smooth subfields having been reconstructed.

**A radial line is a line radiating from the center of the sunspeck.

partitioned field is shown in Fig. 4(b). Each object is given a dif-

ferent label and represented in pseudocolor. From this figure, it is

obvious that most of the sunflecks, shadows and penumbra have

been separated. Notice that penumbra surrounding sunflecks are

partitioned as different objects. Fig. 4(c) demonstrates the recon-

structed field. Comparing with the ground truth shown in Fig. 4(d),

we can see that most of the sunflecks and shadows are faithfully re-

constructed. Because of the large pixel value range, reconstruction

results for the transition areas cannot be clearly observed in this fig-

ure. To reduce the pixel value range, ground truth is subtracted from

the reconstructed field and the error image is presented in Fig. 4(e).

It can be seen that most of the transition area has a small reconstruc-

tion error (darker color corresponds to smaller error). For compari-

son, the intensity image of the Fig. 4(a) is also displayed in Fig. 4(f).

Apparently, if we use this image to measure the light field, a large

measurement error can be expected. Finally, the number of samples

and reconstruction mean square error (MSE) of different sampling

methods are presented in Table 1. Compared to other methods, a

better reconstruction result with fewer samples is achieved by the

multiscale technique we proposed here.

Table 1. Comparison with Other Sampling Methods

Number of Samples MSE

Multiscale 239 0.0535

Rahimi[6] 274 0.0883

Willett*[17] 2432 0.0539

Raster 413 0.0592

*One advantage of [17] is combating noise. So noise with σ2 = 0.21 is
added. Since the method is an image processing technique, it requires a large
number of samples to gain knowledge of the field.

The reconstruction result for a real scene is presented in Fig.5.

365 samples are used with the final reconstruction MSE 0.0655. Due

to the lack of the ground truth, we used the intensity image of the

scene as the ground truth and take samples from it. Hence, the MSE

should be better than using real ground truth. But the resulting im-

age reveals that most of the areas, especially the sunflecks, are re-

constructed correctly in such a complex scene.
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(f) Intensity in decorated image

Fig. 4. Test result for nonuniform ground reflectivity.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a new method to sample the field with

high spatial frequency through different types of sensors. Results

show that by combining measurements from different scales and

modes, we can reduce the number of samples significantly without

compromise in the reconstruction accuracy.

In the incident light intensity reconstruction problem, since the

movement, position and intensity of the sun can be easily deter-

mined, work is going on to track the location and size of the sun-

flecks and shadows. The number of samples are expected to be fur-

ther reduced by predicting the intensity in the sunflecks and shadows.

In the future, we will plan the mobile PAR sensor’s sampling route

and prioritize the samples that reduce the MSE most to reconstruct

the fast changing heterogeneous field. Combination with better in-
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(a) Image of the light field
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(b) Reconstructed light field

Fig. 5. Test result for a real scene

terpolation methods (both spatial and temporal) and more general

use of better models are other tracks for future research.
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