
OPTIMAL DIMENSIONALITY REDUCTION FOR MULTI-SENSOR
FUSION IN THE PRESENCE OF FADING AND NOISE

Ioannis D. Schizas, Georgios B. Giannakis, and Zhi-Quan Luo

Dept. of ECE, University of Minnesota

200 Union Street, Minneapolis, MN 55455, USA

ABSTRACT

We derive linear estimators of stationary random signals based on

reduced-dimensionality observations collected at distributed sensors

and communicated over wireless fading links to a fusion center, where

additive noise is also present. Dimensionality reduction compresses

sensor data to meet low-power and bandwidth constraints, while lin-

earity in compression and estimation are well motivated by the lim-

ited computing capabilities wireless sensor networks are envisioned

to operate with. For uncorrelated sensor data, we develop mean-

square error (MSE) optimal estimators in closed-form; while for cor-

related sensor data, we derive sub-optimal iterative estimators which

guarantee convergence at least to a stationary point. Performance

analysis and corroborating simulations demonstrate the merits of the

novel distributed estimators relative to existing alternatives.

1. INTRODUCTION

With the popularity of battery-powered wireless sensor networks

(WSNs), distributed estimation relying on sensor data processed at

a fusion center (FC) has attracted increasing interest recently. Con-

strained by limited power and bandwidth resources, existing appro-

aches either take advantage of spatial correlations across sensor data

to reduce transmission requirements [2, 6, 7], or, rely on severely

quantized (possibly down to one bit) digital WSN data to form dis-

tributed estimators of deterministic parameters; see e.g., [4] and ref-

erences therein. Distributed estimation of random signals has also

been considered by [3, 6, 7], but results are restricted by one or more

of the following assumptions: i) Gaussian signals and/or sensor data;

ii) linear sensor observation models; and iii) ideal links; i.e., absence

of fading and additive noise at the FC.

Overcoming limitations i)-iii), our goal in this paper is to form

estimates at the FC of a random stationary vector based on analog-
amplitude multi-sensor observations. To enable estimation under the

stringent power and computing limitations of WSNs, we seek linear

dimensionality reducing operators (data compressing matrices) per

sensor along with linear operators at the FC, in order to minimize the

mean-square error (MSE) in estimation. If sufficiently strong error-

control codes are used, we can treat links as ideal and formulate this
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intertwined compression-estimation task as a canonical correlation

analysis problem [5]. Here, we explicitly account for non-ideal links

and develop distributed estimators generally applicable to nonlinear

and non-Gaussian setups.

Specifically, with uncorrelated (decoupled) sensor data we de-

rive in closed-form the MSE optimal compressing and estimation

matrices and prove that the optimal solution amounts to optimally

compressing the linear minimum mean-square error (LMMSE) sig-

nal estimate formed at each sensor (Section 3). With correlated

(coupled) sensor observations, globally optimal distributed estima-

tion has been shown to be NP-hard when reduced-dimensionality

sensor data are concatenated at the FC [3]. For this case, we de-

velop a block coordinate descent iterative estimator which always

converges to a stationary point (Section 4). This distributed estima-

tor subsumes a recent distributed reconstruction algorithm derived

for Gaussian sources and ideal links in [2]. Our findings in Sections

3 and 4 are corroborated by numerical examples (Section 5). We

conclude this paper in Section 6.

2. PROBLEM STATEMENT

Consider the WSN depicted in Fig. 1, comprising L sensors linked

with an FC. Each sensor, say the ith one, observes an Ni × 1 vec-

tor xi that is correlated with a p × 1 random signal of interest s.

Through a ki×Ni fat matrix Ci each sensor transmits a compressed

ki × 1 vector Cixi, using e.g., multicarrier modulation with one en-

try riding per subcarrier. Low-power and bandwidth constraints at

the sensors encourage transmissions with ki � Ni, while linearity

in compression and estimation are well motivated by low-complexity

requirements. Furthermore, we assume that:

(a1) No information is exchanged among sensors, and each sensor-
FC link comprises a ki × ki full rank fading multiplicative channel
matrix Di along with zero-mean additive FC noise zi, which is un-
correlated with xi, Di, and across channels; i.e., noise covariance
matrices satisfy Σzizj = 0 for i �= j. Matrices {Di,Σzizi}L

i=1 are
available at the FC.
(a2) Data xi and the signal of interest s are zero-mean with full
rank auto- and cross-covariance matrices Σss, Σsxi and Σxixj

∀ i, j ∈ [1, L], all of which are available at the FC.
In multicarrier links, full rank of the channel matrices {Di}L

i=1

is ensured if sensors do not transmit over subcarriers with zero chan-

nel gain. Matrices {Di}L
i=1 can be acquired via training, and like-

wise the signal and noise covariances in (a1) and (a2) can be esti-

mated via sample averaging as usual. With multicarrier (and gen-

erally any orthogonal) sensor access, the noise uncorrelatedness
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Fig. 1. Distributed setup for estimating a random signal s

across channels is also well justified. Notice that unlike [2, 3, 6,

7], we neither confine ourselves to a linear signal-plus-noise model

xi = Hs + ni, nor we invoke any assumption on the distribution

(e.g., Gaussianity) of {xi}L
i=1 and s. Equally important, we do not

assume ideal channel links.

Sensors transmit over orthogonal channels so that the FC sepa-

rates and concatenates the received vectors {yi(Ci) = DiCixi +

zi}L
i=1, to obtain the (

PL
i=1 ki) × 1 vector:

y(C1, . . . ,CL) = diag(D1C1, . . . ,DLCL)x + z, (1)

Left multiplying y by a p× (
PL

i=1 ki) matrix B, we form the linear

estimate ŝ of s. For a prescribed power Pi per sensor, our problem is

to obtain under (a1)-(a2) MSE optimal matrices {Co
i }L

i=1 and Bo;

i.e., we seek:

(Bo, {Co
i }L

i=1) = arg min
B,{Ci}L

i=1

E[‖s − By(C1, . . . ,CL)‖2],

s. to tr(CiΣxixiC
T
i ) ≤ Pi, i ∈ {1, . . . , L}. (2)

3. DECOUPLED DISTRIBUTED ESTIMATION

Let us consider first the case Σxixj ≡ 0, ∀i �= j, which shows up

e.g., when matrices {Hi}L
i=1 in the linear model xi = His+ni are

mutually uncorrelated and also uncorrelated with the noise vectors

ni. Then, the multi-sensor optimization task in (2) reduces to a set

of L decoupled problems. Specifically, it is easy to show that the

cost function in (2) can be written as [5]:

J(B, {Ci}L
i=1) =

PL
i=1 E[‖s − Bi(DiCixi + zi)‖2] (3)

−(L − 1)tr(Σss),

where Bi is the p × ki submatrix of B := [B1 . . .BL]. As the ith

non-negative summand depends only on Bi,Ci the MSE optimal

matrices are given by

(Bo
i ,C

o
i ) = arg min

Bi,Ci

E[‖s − Bi(DiCixi + zi)‖2],

s. to tr(CiΣxixiC
T
i ) ≤ Pi, i ∈ {1, . . . , L}. (4)

Since the cost function in (4) corresponds to a single-sensor setup

(L = 1), we will drop the subscript i for notational brevity and write

Bi = B,Ci = C,xi = x, zi = z, P = Pi and k = ki. The

Lagrangian for minimizing (3) can be easily written as:

J(B,C, µ) = Jo + tr(BΣzzB
T ) + µ[tr(CΣxxC

T ) − P ] (5)

+ tr[(Σsx − BDCΣxx)Σ−1
xx (Σxs − ΣxxC

T DT BT )],

where Jo := tr(Σss − ΣsxΣ
−1
xx Σxs) is the minimum attainable

MMSE for linear estimation of s based on x. Continuing, we de-

rive a simplified form of (5) the minimization of which will provide

closed-form solutions for the MSE optimal matrices Bo and Co.

Aiming at this simplification, consider the SVD Σsx = UsxSsx

VT
sx, and the eigen-decompositions Σzz = QzΛzQ

T
z and DT Σ−1

zz D

= QzdΛzdQ
T
zd, where Λzd := diag(λzd,1 · · · λzd,k) and λzd,1 ≥

· · · ≥ λzd,k > 0. Notice, that λzd,i captures the SNR of the

ith entry in the received signal vector at the FC. Further, define

A := QT
x VsxS

T
sx SsxV

T
sxQx with ρa := rank(A) = rank(Σsx),

and Ax := Λ
−1/2
x AΛ

−1/2
x with corresponding eigendecomposi-

tion Ax = QaxΛaxQax, where Λax = diag(λax,1, · · · , λax,ρa ,

0, · · · , 0) and λax,1 ≥ . . . ≥ λax,ρa > 0. Moreover, let Va :=

Λ
−1/2
x Qax denote the invertible matrix which simultaneously diag-

onalizes the matrices A and Λx. Since matrices (Qzd,Qx,Va,Usx,

Λzd,Qzd,D,Σzz) are all invertible, for every matrix C (or B) we

can clearly find a unique matrix ΦC (correspondingly ΦB) that sat-

isfies:

C = QzdΦCVT
a QT

x , B = UsxΦBΛ−1
zd QT

zdD
T Σ−1

zz , (6)

where ΦC := [φc,ij ] and ΦB have sizes k × N and p × k, respec-

tively. Using (6), the Lagrangian in (5) becomes:

J(ΦC , µ) =Jo + tr(Λax) + µ(tr(ΦCΦT
C) − P ) (7)

− tr
“
(Λ−1

zd + ΦCΦT
C)−1ΦCΛaxΦ

T
C

”
.

Applying the well known Karush-Kuhn-Tucker (KKT) conditions

(e.g., [1, Ch. 5]) that must be satisfied at the minimum of (7), we

prove in [5] that the matrix Φo
C minimizing (7), is diagonal with

diagonal entries:

φo
c,ii =

8<
: ±

r“
λax,i

µoλzd,i

”1/2

− 1
λzd,i

, 1 ≤ i ≤ κ

0, κ + 1 ≤ i ≤ k
, (8)

where κ is the maximum integer in [1, k] for which {φo
c,ii}κ

i=1 are

strictly positive, or, rank(Φo
C) = κ; and µo is chosen to satisfy the

power constraint
Pκ

i=1(φ
o
c,ii)

2 = P as:

µo =
(
Pκ

i=1(λax,iλ
−1
zd,i)

1/2)2

(P +
Pκ

i=1 λ−1
zd,i)

2
. (9)

When k > ρa, the MMSE remains invariant [5]; thus, it suffices to

consider k ∈ [1, ρa]. Summarizing, we have established that:

Theorem 1: Under (a1), (a2), and for k ≤ ρa, the matrices minimiz-
ing J(Bp×k,Ck×N ) = E[‖s − Bp×k(DCk×Nx + z)‖2], subject
to tr(Ck×NΣxxC

T
k×N ) ≤ P , are:

Co = QzdΦ
o
CVT

a QT
x , (10)

Bo = ΣsxQxVaΦ
o
C

T
“
Φo

CΦo
C

T + Λ−1
zd

”−1

Λ−1
zd QT

zdD
T Σ−1

zz ,

where Φo
C is given by (8), and the corresponding Lagrange multi-

plier µo is specified by (9). The MMSE is

Jmin(k) = Jo +

ρaX
i=1

λax,i −
kX

i=1

λax,i(φ
o
c,ii)

2

λ−1
zd,i + (φo

c,ii)
2 . (11)

According to Theorem 1, the optimal weight matrix Φo
C in Co dis-

tributes the given power across the entries of the pre-whitened vector

VT
a Qxx at the sensor in a waterfilling-like manner so as to balance

channel strength and additive noise variance at the FC with the de-

gree of dimensionality reduction that can be afforded. It is worth
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mentioning that (8) dictates a minimum power per sensor. Specifi-

cally, in order to ensure that rank(Φo
C) = κ the power must satisfy:

P >

Pκ
i=1(λax,iλ

−1
zd,i)

1/2

p
λax,κλzd,κ

−
κX

i=1

λ−1
zd,i. (12)

The optimal matrices in Theorem 1 can be viewed as implementing

a two-step scheme, where: i) we estimate s based on x at the sensor

using the LMMSE estimate ŝLM = ΣsxΣ
−1
xx x; and ii) compress

ŝLM at the sensor and reconstruct it at the FC using the optimal ma-

trices Co and Bo implied by Theorem 1 after replacing x with ŝLM .

For this estimate-first compress-afterwards (EC) interpretation, we

prove in [5] that:

Corollary 1: For k ∈ [1, ρa], the k × N matrix in (10) can be
written as Co = ĈoΣsxΣ

−1
xx , where Ĉo is the k×p optimal matrix

obtained by Theorem 1 when x = ŝLM . Thus, the EC scheme is
MSE optimal in the sense of minimizing (3).
Another interesting feature of the EC scheme implied by Theorem

1 is that the MMSE Jmin(k) is non-increasing with respect to the

reduced dimensionality k, given a limited power budget per sensor.

Specifically, we establish in [5] that:

Corollary 2: If Co
k1×N and Co

k2×N are the optimal matrices deter-
mined by Theorem 1 with k1 < k2, under the same channel param-
eters λzd,i for i = 1, . . . , k1, and common power P , the MMSE in
(11) is non-increasing; i.e., Jmin(k1) ≥ Jmin(k2) for k1 < k2.

4. COUPLED DISTRIBUTED ESTIMATION

In this section, we allow the sensor observations to be correlated.

Because Σxx is no longer block diagonal, decoupling of the multi-

sensor optimization problem cannot be effected in this case. The

pertinent MSE cost is [c.f. (2)]:

J({Bi,Ci}L
i=1) = E[‖s − PL

i=1 Bi(DiCixi + zi)‖2]. (13)

Minimizing (13) does not lead to a closed-form solution and incurs

complexity that grows exponentially with L [3]. For this reason, we

resort to iterative alternatives which converge at least to a stationary

point of the cost in (13). To this end, let us suppose temporarily

that matrices {Bl}L
l=1,l�=i and {Cl}L

l=1,l�=i are fixed and satisfy the

power constraints tr(ClΣxlxlC
T
l ) = Pl, for l = 1, . . . , L and l �=

i. Upon defining the vector s̄i := s−PL
l=1,l�=i(BlDlClxl +Blzl)

the cost in (13) becomes:

J(Bi,Ci) = E[‖s̄i − BiDiCixi − Bizi‖2] , (14)

which being a function of Ci and Bi only, falls under the realm

of Theorem 1. This means that when {Bl}L
l=1,l�=i and {Cl}L

l=1,l�=i

are given, the matrices Bi and Ci minimizing (14) under the power

constraint tr(CiΣxixiC
T
i ) ≤ Pi can be directly obtained from (10),

after setting s = s̄i, x = xi, z = zi and ρa = rank(Σs̄ixi) in

Theorem 1. The corresponding auto- and cross- covariance matrices

needed must also be modified appropriately, namely Σss = Σs̄is̄i

and Σsxi = Σs̄ixi . We have thus established the following result

for coupled sensor observations:

Theorem 2: If (a1) and (a2) are satisfied, and ki ≤ rank(Σs̄ixi),

then for given matrices {Bl}L
l=1,l�=i and {Cl}L

l=1,l�=i satisfying
tr(ClΣxlxlC

T
l ) = Pl, the optimal Bo

i and Co
i matrices minimizing

E[‖s−PL
l=1 Bl(DlClxl+zl)‖2] are provided by Theorem 1, after

setting x = xi, s = s̄i and applying the corresponding covariance
modifications.
Theorem 2 suggests the following alternating algorithm for distributed

estimation in the presence of fading and FC noise:

Algorithm 1:
Initialize randomly the matrices {C(0)

i }L
i=1 and {B(0)

i }L
i=1,

such that tr(C
(0)
i ΣxixiC

(0)T

i ) = Pi.

for n = 1, . . .

for i = 1, . . . , L

Given C
(n)
1 ,B

(n)
1 , . . . ,C

(n)
i−1,B

(n)
i−1,C

(n−1)
i+1 ,B

(n−1)
i+1 ,

. . . ,C
(n−1)
L ,B

(n−1)
L , determine C

(n)
i ,B

(n)
i via Thm. 2.

end

If |MSE(n) − MSE(n−1)| < ε for a prescribed
tolerance ε, then stop.

end

Notice that Algorithm 1 belongs to the class of block coordinate de-

scent iterative schemes. At every step i during the nth iteration, it

yields the optimal pair of matrices Co
i ,B

o
i , treating the rest as given.

Thus, the MSE(n) cost per iteration is non-increasing and the al-

gorithm always converges to a stationary point of (13). Beyond its

applicability to possibly non-Gaussian and nonlinear model settings,

it is the only available algorithm for handling fading and generally

colored FC noise effects in distributed estimation.

5. NUMERICAL RESULTS

Here we test MMSE performance versus k for the EC scheme and

the estimator returned by Algorithm 1. To assess the difference in

handling noise effects, we also compare EC and Algorithm 1 with

the schemes in [7] and [6], which we abbreviate as C′E and C′′E
because they perform compression (C) followed by estimation (E).

Although C′E and C′′E have been derived under ideal link condi-

tions, we modify them here to account for Di. Our comparisons

will further include an option we term CE, which compresses first

the data and reconstructs them at the FC using Co and Bo found by

(10) after setting s = x, and then estimates s based on the recon-

structed data vector x̂. For benchmarking purposes, we also plot Jo,

achieved when estimating s based on uncompressed data transmitted

over ideal links.

Test Case 1 (EC with uncorrelated sensor data): We consider first

the decoupled case of Section 3, where MMSE performance is char-

acterized by the single sensor (L = 1) setup. Fig. 2 (a) depicts the

MMSE versus k for Jo, EC, CE, C′E and C′′E for a linear model

x = Hs+n, where N = 50 and p = 10. The matrices H,Σss and

Σnn, are selected randomly such that tr(HΣssH
T )/tr(Σnn) = 2,

while s and n are uncorrelated. We set Σzz = σ2
zIk, and select

P such that 10 log10(P/σ2
z) = 7dB. As expected Jo benchmarks

all curves, while the worst performance is exhibited by C′E. Albeit

suboptimal, CE comes close to the optimal EC. The monotonic de-

crease of MMSE with k for EC corroborates Corollary 2. Contrast-

ing it with the increase C′′E exhibits in MMSE beyond a certain k,

we can appreciate the importance of coping with noise effects. This

increase is justifiable since each entry of the compressed data in C′′E
is allocated a smaller portion of the given power as k grows. In EC

however, the quality of channel links and the available power deter-

mine the number of the compressed components (which might lie in

a vector space of dimensionality κ ≤ k), and allocate power opti-

mally among them.

Test Case 2 (Algorithm 1 with correlated sensor data): Here we con-

sider a 3-sensor setup using the same linear model as in Test Case 1,
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while setting N1 = N2 = 17 and N3 = 16. FC noise zi is white

with variance σ2
zi

. The power Pi and variance σ2
zi

are chosen such

that 10 log10(P/σ2
zi

) = 13dB, for i = 1, 2, 3, and the tolerance

quantity for the Algorithm 1 is set to ε = 10−3. Fig. 2 (b) depicts

the MMSE as a function of the total number ktot =
P3

i=1 ki of

compressed entries across sensors for: i) a centralized EC setup for

which a single (virtual) sensor (L = 1) has available the data vec-

tors of all three sensors; ii) the estimator returned by Algorithm 1;

iii) the decoupled EC estimator which ignores sensor correlations;

iv) the C′E and v) an iterative estimator developed in [5], denoted

here as EC-d, which similar to C′E accounts for fading but ignores

noise. Interestingly, our decentralized Algorithm 1 comes very close

to the hypothetical single-sensor bound of the centralized EC estima-

tor, while outperforming the decoupled EC one. Also worth noting

is that EC-d performs close to Algorithm 1 for small values of ktot,

but as ktot increases it behaves as bad as C′E.
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Fig. 2. MMSE comparisons versus k for a centralized, L = 1 (a),

and a distributed 3-sensor setup (b).

6. CONCLUSIONS

We derived algorithms for estimating stationary random signals based

on reduced-dimensionality observations collected by power-limited

wireless sensors linked with a fusion center. We dealt with non-ideal

channel links that are characterized by multiplicative fading and ad-

ditive noise. When data across sensors are uncorrelated, we estab-

lished global mean-square error optimal schemes in closed-form and

proved that they implement estimation followed by compression per

sensor. Besides distributed estimation with reduced dimensionality

decoupled observations, such closed-form solutions are valuable for

all applications principal components and canonical correlation anal-

ysis are sought in the presence of multiplicative and additive noise.

For correlated sensor observations, we developed an algorithm

that relies on block coordinate descent iterations which are guaran-

teed to converge at least to a local stationary point of the associate

mean-square error cost. The optimal estimators allocate properly

the prescribed power following a waterfilling-like principle to bal-

ance judiciously channel effects and additive noise at the fusion cen-

ter with the degree of dimensionality reduction that can be afforded.

Mean-square error performance of our novel estimators was evalu-

ated both analytically and with numerical examples.1
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