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ABSTRACT

In this paper, we consider tracking time-varying number of targets
which move along a two-dimensional area monitored by a network
of wireless sensors. We propose a novel fusion algorithm based
on particle filtering that accounts for both detection of the number
of active targets in the field and estimation of their positions and
velocities. The method uses measurements collected by acoustic
sensors, where the measurements represent superposition of received
powers of signals transmitted by the targets. Computer simulations
are provided to illustrate the feasibility of the proposed method in
scenarios with zero, one, and two targets.

1. INTRODUCTION

Multiple target tracking is a challenging problem that has been
widely addressed in the signal processing literature [1, 2]. The
most interesting and general case of it includes the task of tracking
when the number of targets is unknown. This implies that besides
estimation, the tracker has to implement detection, or in general,
model selection, where distinct models include different number
of targets, which entails that their state spaces are of different
dimensions. One possibility of addressing multiple target tracking
consists of estimating the number of targets separately from the
target estimates [3]. Alternative approaches include the use of
Stone’s model [4], particle filters [5, 6] and random sets [7].

In most of the previous work, the available measurements
are associated with one target at a time which implies that the
problem itself involves the resolution of the problem of data
association. In this paper we address the tracking of time-varying
number of targets in a field of wireless sensors, where the sensor
data represent measurements of superimposed powers of acoustic
signals emanating from one or more moving targets. The sensor
measurements include also background noise. Thus, the problem of
data association is not relevant and instead, other difficulties arise in
the detection.

The measurements do not have to represent acoustic power.
In fact they can be of any type, for example measurements of
radio frequency or vibration signals. In the scenarios that we have
simulated, the measured acoustic powers by the sensors are reported
to a fusion center. The fusion center processes them and at any time
has estimates for the number of active targets in the sensor field and
of their positions and velocities.

In this paper we propose a particle filtering approach to the
multiple target tracking problem as defined above. All the estimates
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of the unknowns (number of targets, positions, and velocities) are
expressed as posterior distributions. We discuss the details of the
method that we have developed and provide results that demonstrate
its feasibility.

The remaining of this paper is organized as follows. In Section
2, we introduce the dynamic system that describes mathematically
our tracking problem of time-varying number of targets. In Sections
3 and 4, we explain the algorithm that we propose for tracking
and discuss its advantages and drawbacks, respectively. Computer
simulation results illustrating the performance of the method are
presented in Section 5. Finally, brief concluding remarks are made
in Section 6.

2. SYSTEM MODEL

Consider a network of N acoustic sensors deployed in a two-
dimensional field. At time instant t an unknown number of targets,
Kt, move in the field according to a standard model formulated as
[2]

xt = Gxxt−1 + Guut (1)

where x�
t = [x�

1,t, . . . ,x
�
Kt,t]

� ∈ R
4Kt indicates the position

and the velocity of the targets in the field, i.e., xk,t =
[x1,k,t x2,k,t ẋ1,k,t ẋ2,k,t]

�, k = 1, . . . , Kt.
The transition matrices, Gx of size 4Kt × 4Kt, and Gu of

size 4Kt × 2Kt, are block diagonal matrices with respective blocks
defined by,
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⎞
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⎞
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where Ts is the sampling period. The noise in the state equation,
ut ∈ R

2Kt , accounts for small acceleration turbulences and is
modeled as a Gaussian process with zero mean and covariance

matrix Cu = diag
(
σ2

u1,1 , σ2
u1,2 , . . . , σ2

uKt,1 , σ2
uKt,2

)
.1 The n-

th sensor is located at a known position rn ∈ R
2, n = 1, . . . , N

and receives the signal power transmitted from the targets that are
present in the field according to [8],

yn,t = gn(xt) + wn,t n = 1, . . . , N

=

Kt∑
k=1

Ψkdα
0

|rn − lk,t|α + wn,t, (2)

1We note that our method, since it is based on particle filtering, can
operate on any type of noise.
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where gn(·) is a function that models the received signal power
by the n−th sensor, Ψk is the emitted power of the k−th target
measured at a reference distance d0, lk,t = [x1,k,t, x2,k,t]

� is the
location of the k−the target at time t, α is an attenuation parameter
that depends on the transmission medium and is considered known
and the same for all sensors, and

|rn − lk,t| =
√

(r1,n − x1,k,t)2 + (r2,n − x2,k,t)2.

The observation noise, vn,t, which is independent from ut, is
modeled according toN (µv, σ2

v), where µv = σ2 and σ2
v = 2σ4/L,

with σ2 and L being the power of the background noise of one
sample and the number of samples used to obtain the measured
power, respectively.

The objective is to detect the number of targets Kt in the
sensor field and track each of them, i.e., estimate xt, using the
measurements of the N sensors, yn,t, n = 1, 2, · · ·N .

3. PARTICLE FILTERING ALGORITHM

In this section we propose a detection/estimation scheme for time-
varying number of targets that is based on particle filtering [5].
Note that our objective is actually finding the posterior distribution,
p(K0:t,x0:t|y1:t),

2. It immediately becomes clear that finding the
analytical form of the posterior is a formidable task, so therefore we
settle for less. To that end, we approximate the posteriors at every
time instant t by discrete random measures which are constructed by
using the mechanism of particle filtering.

The posterior distribution p (K0:t,x0:t|y1:t) is approximated by
the random measure χ0:t = {K(m)

0:t ,x
(m)
0:t , w

(m)
0:t }M

m=1, where K
(m)
0:t

and x
(m)
0:t are streams of particles with corresponding weights w

(m)
0:t ,

and M is the total number of particles. For example, the m−th
particle at time instant t may have a value of K

(m)
t = 2, which

means that it corresponds to two targets and that the states of the
two targets x

(m)
t are expressed by an 8-dimensional vector. Thus,

the size of x
(m)
t in general is 4K

(m)
t × 1, and it may change with

time. When the m−th particle represents no targets, K
(m)
t = 0

and there is only a weight associated with it. Obviously, the state in
this case does not exist, and it is suppressed in the representation of
the random measure. Some other specifics about the particles that
represent no targets are presented in Section 4.

Each of the particle streams represent one possible evolution of
the number of targets in the field and their positions and velocities. If
at time instant t the m−th particle has K

(m)
t > 0 targets, we assume

that at time instant t + 1 one of the following events will happen:

1. the number of targets does not change and the targets are the
same,

2. a new target enters the sensor field and therefore the number
of targets is increased by one, and

3. one of the K
(m)
t of targets from time instant t either leaves

the field or simply becomes inactive, thereby decreasing the
number of targets by one.

In all of these scenarios, we do not allow for a change of more
than one target in the field between two time instants. With this
assumption we keep the number of possibilities relatively small. It
is clear that if a particle at time t corresponds to K

(m)
t > 0 targets, it

will propagate at time instant t + 1 to K
(m)
t + 2 new particles. With

2The notation x0:t means x0,x1, · · · ,xt, and similarly for the other
variables.

this strategy we allow for testing of models that represent creation of
new targets and disappearance of old targets. The computed weights
of the targets provide information about the posterior probabilities
of these models.

When the particle represents no targets in the field at time instant
t, there are only two possible actions at t + 1. One is to create a
target, and the other is to maintain no targets in the field. Recall that
the particle with no targets in the field does not have a state vector.

The weight computation in our approach is the standard one.
If we draw the particles from their priors, the weights are obtained
from the likelihoods according to

w
(m)
t ∝

N∏
n=1

p (yn,t |x(m)
t , K

(m)
t > 0) (3)

where x
(m)
t is a particle of a state vector of K

(m)
t targets. When the

particle represent no targets, its weight is given by

w
(m)
t ∝

N∏
n=1

p (yn,t |K(m)
t = 0). (4)

An important issue in the computation of the weights of all the
particles is their comparability. In other words, can we compare
the weights of the particle that correspond to different models? The
answer to this question is affirmative. This can easily be deduced
from (3) and (4), where the factors in the product represent one-
dimensional probability density functions.

The proposed particle filtering procedure is summarized below.

At each time instant t > 0, perform the following operations:
1. Particle generation: For all m, where K

(m)
t > 0, generate

(K
(m)
t + 2) particles, where

(a) One particle that maintains the number of K
(m)
t targets,

(b) K
(m)
t particles that correspond to one of the K

(m)
t

different combinations of K
(m)
t − 1 targets, and

(c) One particle that adds one more target, i.e., that
corresponds to K

(m)
t + 1 targets.

If K
(m)
t = 0, generate only one particle for a model with

one target.
2. Weight computation: Compute the weights of the particles
generated in step 1 according to (3) and (4) and normalize
them.
3. Estimation: Obtain the estimates of the positions of the
targets according to each of the models.
4. Resampling: Resample M particles from the set of
generated particles.

4. DISCUSSION

Here we briefly discuss a few important issues of our approach. We
start with the particles that represent no targets in the field. Suppose
that at time instant t there are no targets and that all the particles
represent no targets. These are “abstract particles” all collapsed into
one particle that has no state. For the next time instant, we generate
M particles with one target and compute their weights. We also
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Fig. 1. Top: The sensor field and the true and estimated trajectories
of two targets. The time instants of its appearance/disappearance are
indicated. Middle: x-coordinates of the targets as functions of time.
Bottom: y-coordinates of the targets as functions of time.

compute the weight of the particle with no targets. Then we formally
clone that particle M times (because these particles are all identical)
and proceed with resampling from 2M to M particles. If at time
instant t + 1, M1 particles were resampled that correspond to one
target, and M − M1 particles of no targets, then the M1 particles
would create 3M1 new particles, and the M − M1 particles of no
targets, 2(M − M1) new particles. All the new particles would be
resampled in the usual way. The method proceeds along these lines
for time instants t + 2, t + 3, and so on.

When we have multiple targets, it is important to label them so
that we can use the particles to estimate the states of the targets.
Namely, the elements of the state vector of each particle must be
ordered in a way that would allow for element-wise comparison
of the state vectors. For example, if there are K

(m)
t > 1 targets

in the field, and the first element of the state vector represents the
x coordinate of the “first” target, then the first elements of all the
particles must represent the coordinate of that target. We achieve
this by labeling (indexing) the targets.

Finally, we point out the importance of the initialization of the
targets. Clearly, if we have prior information about the problem (for
example, roads where the targets move), it should be exploited in
generating the initial possible positions of the targets. In absence
of any knowledge, we can either set the initial positions of the
targets by drawing from a uniform distribution, or we can use a
method that is specifically devised for this purpose and based on
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Fig. 2. Estimates of the magnitude of the velocity with respect to
time.

the computation of likelihoods of the position of the new target. The
former would require the use of a larger number of particles and
therefore more computation. In comparison to scenarios of good
priors, the latter, too, will have increased computation which will be
due to the calculations of the likelihoods.

5. COMPUTER SIMULATIONS

.
In this section, we present simulation results that show the

performance of the tracking algorithm discussed in Section 3. We
ran an experiment where we generated data according to model
(1)-(2), which corresponded to the evolution of a system during
T = 100s with sampling period Ts = 0.5s. We considered
that the distribution of the state noise was ut ∼ N (0, .5I2Kt);
the parameters of the observation model were, Ψk = Ψ = 107,
d0 = 1m, and α = 2; and the observation noise distribution was
generated with σ2 = 0.02 and L = 100. At the beginning of
the simulation no targets were present in the field; at time instant
t = 15s a first target appeared; at time instant t = 37.5s a second
target got into the sensor area; and finally, at t = 75s the first
target disappeared. The sensor network was composed of N = 16
sensors placed on a deterministic grid within the field (see Figure 1
for system configuration were the sensors are marked with dots.)

We applied the algorithm proposed in Section 3 using M = 500
particles3 and initialized it by assuming the starting areas of the
trajectories approximately known. The obtained estimates for the
positions of the targets in one simulation run are shown in Figure
1 (top). It can be seen that the algorithm successfully follows the
trajectories of the targets. Figure 2 depicts the estimates of the
magnitude square of the velocities of the targets.

Figure 3 illustrates the time-evolution of the model estimate
in terms of number of particles that followed each model at every
time instant after resampling. Note that the changes in the model
(time instants 15s, 37.5s, and 75s) were immediately detected by
the particle filter.

We also ran experiments in order to obtain statistical averages on
the performance of the algorithm. The presented results correspond
to a similar scenario as before where at the beginning there were no
targets in the field; at time instant t = 15s, a first target appeared,
and at time instant t = 37.5s, a second target appeared and both
targets continued within the field until the end of the simulations. We

3Recall that this is the number of particles after resampling.
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Fig. 3. Evolution of the model estimate with respect to time.

generated one trajectory and we ran 20 realizations of the algorithm
using different observation measurements and given a minimum
desired signal-to-noise ratio (SNR) when a target was located in the
middle of the square formed by 4 adjacent sensors. The probability
of incorrect model estimation (Pe) during the simulation time is
shown in the following table:

SNR (dB) Pe

−10 1
−5 0.5
0 0.1
5 0.05
10 0

We also used the data obtained from this experiment to compute
the root mean square (RMS) error made in the estimation of the
positions. For the k-th target, the RMS is given by

RMSj
t =

√√√√ 1

20

20∑
j=1

[
(xest,j

1,k,t − xj
1,k,t)

2 + (xest,j
2,k,t − xj

2,k,t)
2
]

where [xj
1,k,t xj

2,k,t]
� was the true position of the target at time t

in the j-th run, and [xest,j
1,t,j xest,j

2,t,j ]� was the corresponding estimate
obtained by the filter. Figure 4 shows the obtained results for SNR=
0 dB and SNR= 10 dB. Note that these results are in agreement
with the table values and that the made errors are acceptable given
the dimensions of the sensor field (see Figure 1 (top).)

6. CONCLUSIONS

.
We have presented a particle filtering method for detection of

the number of targets and estimation of their positions and velocities
in a two-dimensional sensor field using acoustic measurements.
At every time instant the algorithm tests a set of models which
are generated according to a well predefined rule. Simulation
results show very good performance of the particle filtering both in
detecting the correct number of targets and estimating their positions
and velocities in time.
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