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ABSTRACT

In this paper we propose a novel approach to distributed detection
using learning-based local classifiers and likelihood ratio test (LRT)
based fusion center. Local detector’s soft outputs are not restricted to
have any probabilistic meaning, so even pure discriminative training
method can be used. We propose to estimate the conditional densi-
ties of the soft output of the local classifiers to formulate the LRT in
the fusion center. Also, we suggest simple censoring schemes that
take into account the learning-based approaches problem of the slow
convergence of tails of learned distributions. The Neyman Pearson
(NP) and the sequential probability radio tests are developed for this
approach and NP performance is analyzed. The generality of the
proposed procedure is illustrated in an example outside the typical
field of sensor networks: the automated infectious tuberculosis (TB)
diagnosis using local detections of TB bacilli in microscopic images.

1. INTRODUCTION

Distributed detection methods are traditionally based on optimum
likelihood ratio tests (LRT) relying on precise probabilistic mod-
elling [1]. Nevertheless, erroneous or imprecise knowledge on the
model can substantially degrade the performance of the tests. Re-
cently, a statistical learning method has been proposed for the si-
multaneous determination of both local and global detectors [2] that
overcomes this difficulty by substituting the probabilistic modelling
by a set of training examples (each example is an snapshot reading
of the local detectors or sensors jointly with the ground truth). How-
ever, the main drawbacks of the last approach are the unrealistic set-
ting of the problem (for example, in a sensor network application,
the procurement of the training set may be problematic, and the fail-
ure of a single sensor provokes the whole system be re-trained), and
the slow convergence of the method when extreme (i.e. very small)
probability of error is required.

In a previous work, [3], we suggested the possibility of using
learning-based local detectors in the context of target detection in
sensor networks, although the probabilistic interpretation of the lo-
cal classifier output is provided by the underlying physics of the
sensed phenomenon. In comparison with [2], it does not suffer from
the above mentioned drawbacks because all the sensor are assumed
identical and the data fusion is performed by a LRT. In this work
we extend [3] in a more general setting, considering specifically the
design of local detectors and its probabilistic interpretation.

For simplicity, we only consider the binary decision problem in
batch and sequential form, the first using the Neyman-Pearson (NP)
criterion, and the second using a Sequential Probability Ratio Test
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(SPRT). We will also address censoring schemes similar to the one
proposed in [4] not only with the purpose of avoiding uninformative
transmission to the fusion center, but also for taking into account the
uncertainty in the probabilistic interpretation of the local detector
output. Also, we do not consider the problem of quantization of the
(soft) local detector output.

The scope of the proposed methods goes further than the typical
application of sensor networks and, as an illustration, we apply them
to a medical image diagnosis problem: the detection of infectious
tuberculous patients.

The rest of the paper is organized as follows: in Section 2 we
address the problem of using a LRT at the fusion center when the
local detectors are designed using statistical learning methods. In
Section 3 we obtain the batch and sequential LRT and the asymptotic
performance of the NP test. We propose different censoring schemes
in Section 4. The effectiveness of the methods is shown in the above
mentioned medical diagnosis problem using real data in Section 5,
and Section 6 concludes the paper.

2. DISTRIBUTED DETECTION AND LEARNING

We consider two hypothesis, H0 or null hypothesis, and H1 or alter-
native hypothesis, and � identical binary local classifiers or sensors,
each one providing a real soft output xi. The local classifiers are
designed using some generative or discriminative statistical learn-
ing method [5] for solving a classification problem related, but not
necessarily identical, to the discrimination between H0 and H1.

The formulation of a LRT in the fusion center needs the knowl-
edge of the, in general not available, conditional densities fX|H0(xi|H0)
and fX|H1(xi|H1). If the learning method is a generative one, the
generative model can provide these densities either directly or after
some transformation. However, pure discriminative classifiers are
simpler, have less computational requirements, and offer better per-
formance [5] in terms of error classification.

Among the discriminative methods, the ones based on the Em-
pirical Risk Minimization (ERM) principle [6], such Neural Net-
works (NN) or Support Vector Machines (SVM), are the most widely
used. Some cost functions in ERM provide solutions in which the
soft output of the classifier is directly interpretable as a posterior
probability [7] but at the cost of complex classifiers or suboptimum
classifier architecture determination. Others, on the contrary, like
the one used in SVM, offer excellent discrimination performances
but their soft output has no probabilistic interpretation. Even more,
different cost functions can provide the same classification boundary
that tends to the Bayes optimum classifier but different soft output.
There are some attempts to provide a probabilistic interpretation to
the soft output of the SVM classifiers: in [8] the SVM is introduced
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in a Bayesian framework; in [9] SVM is interpreted as the maximum
a posteriori (MAP) solution of the inference in a Gaussian process
(GP) with adequate priors; or [10], where the use of a different cost
function in SVM gives an elegant formulation of the SVM as the
MAP solution of the inference in a GP.

Even if the local classifier design allows a probabilistic inter-
pretation of its soft output, its goal can not be the discrimination
between H0 and H1, as mentioned above (more on this in Sec-
tion 5). Accordingly, we propose, as a general rule, to estimate
fX|H0(xi|H0) and fX|H1(xi|H1) from a training set (see [11] for
different methods of density estimation).

We also propose not to transmit the sensor output if it is not
informative enough (similarly to [4]) or if it is located in a region
where the tails of fX|H0(xi|H0) and fX|H1(xi|H1) are not well
characterized due to limitations on the size of the training dataset.
We adopt a simple censoring scheme where xi is transmitted if xi ∈
R where R is the region where the transmission is allowed.

3. HYPOTHESIS TESTING

Assuming conditionally independence between the local detector out-
puts, and being �t the number of sensors which are allowed to trans-
mit, the conditional probabilities at the fusion centers are

fX|H1(x|H1) =

�tY
i=1

fX|H1(xi|H1)

�Y
j=�t+1

P (xj ∈ R̄|H1)

fX|H0(x|H0) =

�tY
i=1

fX|H0(xi|H0)

�Y
i=�t+1

P (xi ∈ R̄|H0)

where x are the observations and R̄ is complementary to R, that
is, the region where transmission is not allowed. We will denote
P (xi ∈ R̄|H1) as PR̄|1 and P (xi ∈ R̄|H0) as PR̄|0 for short. Note
that the sensors not transmitting also contribute to the log likelihood
ratio (LLR). The LLR test for a sensing instant is

γ = ln
fX|H1(x|H1)

fX|H0(x|H0)

H0
≷
H1

τ (1)

When the number of sensor � tends to infinity, the LLR γ tends to
a normal random variable. Therefore, the threshold τ for NP test of
level α can be obtained by asymptotic gaussianity (as in [3]) leading
to

τ =
q

�(E{γ2
H0

} − D2(H0||H1))Q
−1(α) − �D(H0||H1)

where Q is the Marqum’s function and Q−1 its inverse, D is the
Kullback-Leibler (KL) divergence [12], γH0 = γ|H=H0 and
D(Hi||Hj) = D(fX|Hi

(x|Hi)||fX|Hj
(x|Hj)).

To obtain the performance of the NP test we use the large devi-
ation theory [12]. If εn is the probability of error (of some kind) ob-
tained from n observations, the error exponent is defined as
limn→∞ − 1

n
ln εn. In NP test, the best error exponent is given by

Stein’s lemma [12], that says that for any α ∈ (0, 1)

lim
n→∞

1

n
ln βn = −D(fX|H0(x|H0)||fX|H1(x|H1)) (2)

where βn is the miss probability for a NP test with n observations.
Accordingly, the purpose of the censoring scheme is maximize the
KL divergence of the transmitted decisions.

A sequential test compares the accumulated LLR γk

γk = (� − �t) ln
PR̄|1
PR̄|0

+

kX
i=1

ln
fX|H1(xi|H1)

fX|H0(xi|H0)

for k = 1 . . . �t with two thresholds πu, πl, which depend on desired
false alarm probability (PFA) and detection probability (PD).

γk

8><
>:
≥ πu output H1

≤ πl output H0

otherwise continue.

By using Wald’s approximations [13] πu ≈ ln PD
PF A

and πl ≈ ln 1−PD
1−PF A

.
Note that sequential test does not necessarily use all the information
available from the sensors. For instance, if γk exceeds πu or πl for
k < �t the test ends, no more information is needed. On the other
hand, if γ�t does not exceed πu or πl, H0 can be decided if γ�t ≤ 0
or H1 if γ�t ≥ 0 but none of these decisions meets the quality con-
straints. In this situation, many applications make no decision and
another sensing round is used to accumulate more evidence about
the hypothesis. This procedure is repeated until a decision can be
made.

The arbitrary precision is not the only nice property of SPRT.
Also, the average number of observations needed by an SPRT is not
larger than the number of observations needed by a fixed-number
of observations test (like NP). The expected number of observations
needed by a sequential test to fulfill some requirements is analyzed
in [13].

4. CENSORING

Once fX|H0(xi|H0) and fX|H1(xi|H1) are known (estimated) the
region R where the transmission is allowed can be determined. R
can be restricted to the values that contribute significantly to the

LLR. All the xi such that ln
fX|H0

(xi|H0)

fX|H1
(xi|H1)

≈ 0 should not be trans-

mitted. Note that ifR has a small probability no transmission will be
allowed, in this case, PR̄|1 and PR̄|0 will determine the test output.
For the sake of simplicity, let assume without loss of generaliza-
tion the following: the local classifier output is positive if it detects
the target and its value is greater as its certainty increases (the same
occurs for negative classifier output). Also assume that the a priori
probability of target present is small. In this situation, there are some
simple possibilities for the region selection:

1. R = {xi ∈ (th,∞)} where th ∈ R. Only transmissions
are made to confirm H1 hypothesis. The rational behind this
strategy is that the a priori probability of H1 is small in many
practical applications.

2. R = {xi ∈ (−∞, t′h) ∪ (th,∞)} where t′h ≤ th ∈ R.
Now, information is added when a sensor is quite confident
about H0 hypothesis. Transmitting information about H0 can
be useful if the sensors are distributed in such a way that a
very confident negative decision can confirm H0 with high
probability and make the test finish quickly.

3. R = {xi ∈ (a, b) ∪ (c, d) ∪ . . .} where a ≤ b ≤ c ≤
d ∈ R. If KL divergence has two or more intervals where the
discrimination between the hypothesis is high.

There is always a tradeoff between accuracy and power/bandwidth
consumption. With perfect statistical information the best we can do
for accuracy is to avoid censuring. But in many applications huge
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power/bandwidth savings can be attained with small losses in accu-
racy. Another important practical point is not to use regions where
the estimates of fX|H0(xi|H0) and fX|H1(xi|H1) are poor. This
poor estimates can produce artificial LLR that may push the test to-
wards the wrong direction. This always happens when using sam-
ples of the tails of the estimated densities. Therefore, the intervals
showed above should be restricted for high positive or negative val-
ues.

5. APPLICATION EXAMPLE

To illustrate the usefulness of the proposed procedure, we consider
an application outside the typical one in distributed detection: sen-
sor networks. Here we address the medical diagnosis of patients
who suffer tuberculosis (TB) from infectious (I) to non infectious
(NI) using a local detector which analyzes microscopic images from
patient’s sputum to detect the TB bacillus. As mentioned in previous
sections, the goal of local detector (the detection of TB bacilli) is dif-
ferent from the overall or data fusion goal (the classification of the
patients). This application requires a very low FA rate. TB bacillus
labelling is a very expensive task. In this situation, it is very difficult
to obtain a learning based classifier that fulfills the requirements. A
statistical model of the target is very difficult too. On the other hand,
as many images as required can be obtained from the sputum.

A decentralized detection system can model very well this prob-
lem: the images are divided in small overlapping regions and each
region is presented to the local detector. All the informative local
detector outputs are sent to the fusion center, which is an SPRT that
asks for more images until the requisites are fulfilled. This way, the
performance of the local detector is not so critical because the per-
formance requirements can be set in the fusion center.

For the experiments we use a database with 11 I patients, and 35
NI patients. There are 897 images, 424 belonging to I patients and
the rest to NI patients. The images are 1600x1200 pixels RGB, but
we only use RG bands as we do not expect to find information in
blue band. We employ 9 I patients and 20 NI for training purposes
and 2 I patients and 15 NI patients for testing. This results in 569
images for training and 328 images for testing.

5.1. Local detector

The training set for the local detector contains 9987 regions labelled
as bacillus, which have been obtained from regions centered on the
bacillus that include real bacillus and rotations and/or displacements
of them as virtual ones. We selected 10515 regions for the back-
ground (regions where the bacillus is not present). The test set con-
tains 1179 regions with bacillus presence and 28295 regions from
the background.

Each region has dimension 41 pixel × 41 pixel × 2 bands =
3362 pixels, which is quite high. To reduce dimensionality we per-
form a feature extraction procedure. We apply principal component
analysis (PCA) [14], linear discriminant analysis (LDA) [15] and
maximization of mutual information (MMI) [16] methods to this
problem. Table 1 shows a comparison among these methods. The
last column in this table shows a measure of the pseudo Receiver
Operation Characteristic (ROC) curve that is called Area Under the
Curve (AUC). This pseudo-ROC is obtained by sweeping the bias of
the SVM to achieve pairs (PD , PFA) from PFA=0 to PFA=1. The
first row represents no feature extraction. According to this table,
PCA seems the best option. Also note the high accuracy obtained by
LDA using just 1 feature.

Method final dimension Accuracy AUC
- 3362 99.8371% 0.99347

PCA20 20 99.8914% 0.99985
LDA1 1 98.7379% 0.992
MMI20 20 99.6811% 0.99836

Table 1. Classification performance using different feature extrac-
tion methods.

5.2. Fusion center

Let H0 be the hypothesis that the patient is NI and H1 the hypothesis
that is I. To obtain the SPRT fX|Hj

(xi|Hj) need to be estimated.
First, the output of the local detector is obtained for all the regions
of the training images. Then, a Gaussian mixture model is used to
estimate fX|H0(xi|H0) and fX|H1(xi|H1) using the images of NI
and I patients respectively. The estimates are plotted in Figure 1 (a).

As most of the regions in NI and I patients do not contain bacilli
the negative part dominates both fX|H0(xi|H0) and fX|H1(xi|H1).
Also, the number of regions with bacilli is very small compared with
the region without bacilli and the mass probability of both densities
for positive outputs of the local detector is very small. However, the
discrimination is possible because fX|H1(xi|H1) > fX|H0(xi|H0)
in the region where xi is positive as can be seen in Figure 1 (b). Note
that a detected bacillus corresponds to a positive output. The censor-
ing scheme is clear in this case, we can select R = {xi ∈ (0,∞)}
because 0 is the threshold of the local detector to decide that a bacil-
lus is present. As an alternative to 0 it is also reasonable to choose the
point where fX|H1(xi|H1) > fX|H0(xi|H0) in Figure 1 (b). But,
as fX|Hj

(xi|Hj) are just estimates and the local detector outputs
fulfill xi ≤ 4 then the LR can be artificially very high for xi � 4 and
may confuse the test. So we set R = {xi ∈ (0, 6)} to avoid this sit-
uation. Finally, the probabilities of not transmitting PR̄|0 and PR̄|1
are calculated by integrating fX|H0(xi|H0) and fX|H1(xi|H1) in
R̄ resulting PR̄|0 ≈ 0.99985 and PR̄|1 ≈ 0.99837.

In Table 2 we show the performance of the patient classifier. The
experiments where carried out for a β = 1-PD = 1e-8 and a α = PFA

= 1e-8. In the table, class is the correct hypothesis of the patient;
id means the patient’s id; reg# the number of regions available for
that patient; dec. the decision made, H1 stands for I and H0 for
NI; done informs if the sequential test has enough confidence to take
the decision; LLR is the log-likelihood ratio, if it is greater than 0
is more probable that the patient is infectious and, finally, reg. used
is the number of regions analyzed by the fusion center to make the
decision. The first thing to note in the Table is that all the patients
are well classified. However, it has not enough confidence in 5 de-
cisions, more images are needed in these cases. If more images are
not available, these cases should be supervised by a human expert.
Another point is that the number of images required varies from pa-
tient to patient, we think that this depends on the number and the
characteristics of the bacilli that appear in each image.

6. CONCLUSIONS

In these paper a novel approach to distributed detection has been
proposed. The main novelty is the use of learning-based local detec-
tors with no statistically interpretable outputs. This enables the use
of simple and pure discriminative methods from machine-learning in
distributed detection. We show how to construct log-likelihood ratio
tests using these local detectors and develop the NP and SPRT tests.
Also, we suggest simple censoring schemes that take into account
the learning-based problem of the slow convergence of the tails of
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Fig. 1. (a) Conditional probability densities of the local detector
output. (b) Zoom of the probability densities in the positive part.

class id reg# dec. done LLR reg. used

H1 675 536052 H1 yes 18.9525 56721
H1 738 237765 H1 yes 18.9182 135035
H0 139 43230 H0 yes -18.4212 30207
H0 210 43230 H0 yes -18.4209 34103
H0 930 43230 H0 no -2.02386 43230
H0 931 43230 H0 yes -18.4208 30446
H0 944 43230 H0 yes -18.4209 33443
H0 945 38907 H0 yes -18.4212 35702
H0 950 43230 H0 yes -18.4209 30084
H0 986 43230 H0 yes -18.4211 28634
H0 820 43230 H0 no -3.9428 43230
H0 855 43230 H0 no -13.8922 43230
H0 857 38907 H0 no -17.0282 38907
H0 858 43230 H0 no -12.8873 43230
H0 859 38907 H0 yes -18.4207 33200
H0 860 34584 H0 yes -18.4208 33339
H0 861 43230 H0 yes -18.4207 33350

Table 2. Fusion center decisions and confidences.

learned distributions, which is very important in practical applica-
tions. We have successfully applied the suggested framework to the
automated tuberculosis (TB) diagnosis.

As future work, using the bounds we have obtained, and exam-
ining the relation of the probability densities before and after censor-
ing it is possible to obtain the optimal censoring region taking into
account both the performance and the stability of the tests.
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