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ABSTRACT

Existing channel aware signal processing design for decen-
tralized detection in wireless sensor networks typically as-
sumes the clairvoyant case, i.e., global information regarding
the transmission channels is known at the design stage. In this
paper, we consider the distributed detection problem where
only the channel fading statistics, instead of the instant chan-
nel state information (CSI), is available to the designer. We
investigate the design of local decision rules for the following
two cases: 1. Fusion center has the instant CSI; 2. Fusion
center does not have the instant CSI. We show that, for both
cases, the optimal local decision rules that minimize the error
probability at the fusion center amount to a likelihood-ratio
test (LRT), as in the previous work with known CSI. The pro-
posed approach enables distributed design for a decentralized
detection problem.

1. INTRODUCTION

While study of decentralized decision making can be traced
back to the early 1960s in the context of team decision prob-
lems (see, e.g., [1]), the effort significantly intensified since
the publication of [2]. In [2], Tenney and Sandell formulated
the distributed detection problem using a Bayesian setting and
showed that, for a two-sensor case and under the conditional
independence assumption, the optimal local sensor decisions
are likelihood-ratio tests (LRTs). This work was later gen-
eralized to multiple sensors by Reibman and Nolte [3] and
by Hoballah and Varshney [4]. Similarly, under the Neyman-
Pearson (NP) criterion, the optimality of the local LRT has
been established in [5].

All of the above work assumed error-free transmission be-
tween the local sensors and the fusion center. This is overly
idealistic in systems with stringent resource and delay con-
straints, such as the wireless sensor network (WSN) with geo-
graphically dispersed lower power low cost sensor nodes. Ac-
counting for non-ideal transmission channels, channel aware
signal processing for distributed detection problem has been
developed in [6–8]. The optimal local decision rule was still
shown to be a monotone likelihood ratio partition of its ob-
servation space, provided the observations were conditionally
independent across the sensors.

The work in [6–8] assumed a clairvoyant case, i.e., global
information regarding the transmission channels between the
local sensors and the fusion center is available at the design
stage. This is theoretically significant as it provides the best
achievable detection performance to which any suboptimal
approach needs to be compared. On the other hand, it lacks
practical significance due to the requirement of exact knowl-
edge of global CSI. This is further exacerbated by the poten-
tial mobility of sensors that leads to fast fading channels: de-
cision rules for all sensors need to be synchronously updated
for different channel realizations.

In this paper, we consider the distributed detection prob-
lem where the designer only has the channel fading statistics
instead of the instant channel state information (CSI). In this
case, a sensible performance measure is to use the average
error probability at the fusion center where the averaging is
performed with respect to the channel state. We restrict our-
selves to binary local sensor outputs and derive the necessary
conditions for optimal local decision rules that minimize the
average error probability at the fusion center for the following
two cases: 1) CSIF: the fusion center has the instant CSI. 2)
NOCSIF: the fusion center does not know the instant CSI. We
note here that the CSIF design itself does not require CSI even
though it assumes the fusion center has knowledge of CSI. Its
computation, however, is very involved and has to resort to
exhaustive search. On the other hand, the NOCSIF case can
be reduced to the channel aware design where one averages
the channel transition probability with respect to the fading
channel using the known fading statistics.

We show that the local decision rules amount to local
LRTs for both cases. Compared with the channel aware de-
sign based on CSI, the proposed approaches have an impor-
tant practical advantage: the sensor decision rules remain the
same for different CSI, as long as the fading statistics re-
main unchanged. This enables distributed design as no global
CSI is used in determining the local decision rules. We also
demonstrate through numerical examples that the proposed
schemes suffer small performance loss compared with the
CSI based approach, as long as the CSI is available at the
fusion center.

The paper is organized as follows. Section 2 describes the
system model and problem formulation. In Section 3, we es-
tablish, for both the CSIF and NOCSIF cases, the optimality
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Fig. 1. A block diagram for a wireless sensor network tasked
for binary hypothesis testing with channel fading statistics.

of LRTs at local sensors for minimum average error proba-
bility at the fusion center. Numerical examples are presented
in Section 4 to evaluate the performance of these two cases.
Finally, we conclude in Section 5.

2. STATEMENT OF THE PROBLEM

Consider the problem of testing two hypotheses, denoted by
H0 and H1, with respective prior probabilities π0 and π1. A
total number of K sensors are used to collect observations
Xk, for k = 1, · · · ,K. We assume throughout this paper that
the observations are conditionally independent, i.e.,

p(X1, · · · ,XK |Hi) =
K∏

k=1

p(Xk|Hi), i = 0, 1. (1)

Upon observing Xk, each local sensor makes a binary deci-
sion

Uk = γk(Xk) k = 1, · · · ,K.

The decisions Uk are sent to a fusion center through parallel
transmission channels characterized by

p(Y1, · · · , YK |U1, · · · , UK ; g1, · · · , gK) =
K∏

k=1

p(Yk|Uk, gk)

where g = {g1, · · · , gK} represents the CSI. For the CSIF
case, the fusion center takes both the channel output y =
{Y1, · · · , YK} and the CSI g and makes a final decision us-
ing the optimal fusion rule to obtain U0 ∈ {H0,H1},

U0 = γ0(y;g).

For the case of NOCSIF, the fusion output depends on the
channel output and the channel fading statistics:

U0 = γ0(y)

where the dependence of fading channel statistics is implicit
in the above expression. An error happens if U0 differs from
the true hypothesis. Thus, the error probability at the fusion
center, conditioned on a given g, is

Pe0(γ0, · · · , γK |g) � Pr(U0 �= H|γ0, · · · , γK ,g) (2)

where H is the true hypothesis. Our goal is, therefore, to de-
sign the optimal mapping γk(·) for each sensor and the fusion

center that minimizes the average error probability, defined
as:

min
γ0(·),···,γK(·)

∫
g

Pe0(γ0, · · · , γK |g)p(g)dg (3)

where p(g) is the distribution of CSI. A simple diagram illus-
trating the model is given in Fig. 1.

3. DESIGN OF OPTIMAL LOCAL DECISION RULES

As in [7], [8], we adopt in the following a person-by-person
optimization (PBPO) approach, i.e., we optimize the local de-
cision rule for the kth sensor given fixed decision rules at all
other sensors and a fixed fusion rule. As such, the conditions
obtained are necessary, but not sufficient, for optimality. The
fusion center, as usual, is assumed to implement the maxi-
mum a posteriori probability (MAP) decision rule. Denote
by

u = [U1, U2 · · · , UK ],
x = [X1,X2, · · · ,XK ],

the average error probability at the fusion center is

Pe0 =
∫
g

1∑
i=0

πiP (U0 = 1 − i|Hi,g)p(g)dg

=
∫
g

1∑
i=0

πi

∫
y

P (U0 = 1 − i|y,g)
∑
u

p(y|u,g)

∫
x

P (u|x)p(x|Hi)p(g)dxdydg (4)

where, different from the CSI based channel aware design, the
local decision rules do not depend on the instant CSI. Next,
we will further expand the error probability with respect to
the kth decision rule γk(·) for the two different cases.

3.1. The CSIF Case

We first consider the case where the fusion center knows the
instant CSI. Define, for k = 1, · · · ,K and i = 0, 1,

uk = [U1, · · · , Uk−1, Uk+1, · · · , UK ],

uki = [U1, · · · , Uk−1, Uk = i, Uk+1, · · · , UK ],

we can expand the average error probability in (4) with re-
spect to the kth decision rule γk(·), and we get

Pe0 =
∫

Xk

P (Uk = 1|Xk)[π0p(Xk|H0)Ak

−π1p(Xk|H1)Bk]dXk + C (5)

where

C =
∫

Xk

[
1∑

i=0

πip(Xk|Hi)
∫
y

∫
g

P (U0 = 1 − i|y,g)

∑
uk

p(y|uk0,g)p(g)p(uk|Hi)dgdy

]
dXk
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is a constant with regard to Uk, and

Ak =
∫
y

∫
g

P (U0 = 1|y,g)

[∑
uk

(
p(y|uk1,g)

−p(y|uk0,g)
)
p(g)P (uk|H0)

]
dgdy, (6)

Bk =
∫
y

∫
g

P (U0 = 0|y,g)

[∑
uk

(
p(y|uk0,g)

−p(y|uk1,g)
)
p(g)P (uk|H1)

]
dgdy. (7)

To minimize Pe0, one can see from (5) that the optimal deci-
sion rule for the kth sensor is

P (Uk = 1|Xk) =
{

0, π0p(Xk|H0)Ak > π1p(Xk|H1)Bk

1, Otherwise.

Let’s further take a look at Ak in (6). We can rewrite it as

Ak =
∫
yk

[P (U0 = 1|yk, Uk = 1)

−P (U0 = 1|yk, Uk = 0)]p(yk|H0)dyk.

Then, following the similar derivation in [8], we can show
that Ak > 0 as long as

L(Uk) � P (Uk|H1)
P (Uk|H0)

is a monotone increasing function of Uk (monotone LR index
assignment), i.e.,

L(Uk = 1) > L(Uk = 0). (8)

Similarly, Bk > 0 if condition (8) is satisfied. This immedi-
ately leads to the following result.

Theorem 1 For the distributed detection problem with un-
known CSI only at local sensors, the optimal local decision
rule for the kth sensor amounts to the following LRT assum-
ing condition (8) is satisfied.

P (Uk = 1|Xk) =

{
1, p(Xk|H1)

p(Xk|H0)
≥ π0Ak

π1Bk

0, p(Xk|H1)
p(Xk|H0)

< π0Ak

π1Bk

(9)

where Ak and Bk are defined in (6) and (7) respectively.

Although the optimal local decision rule for each local
sensor is explicitly formulated in (9), it is not amenable to nu-
merical evaluation: In (6) and (7), the integrand involves the
fusion rule that is a highly nonlinear function of the CSI g,
making the integration intractable. The only possible way of
finding the optimal local decision rules appears to be an ex-
haustive search, whose complexity becomes prohibitive when
K is large.

Instead of directly minimizing the average error probabil-
ity as in (3), an alternative approach is to first average the

channel transition probability with respect to the fading chan-
nel. That is, we compute p(Yk|Uk) by marginalizing out the
channel gk:

p(Yk|Uk) =
∫

gk

p(Yk|Uk, gk)p(gk)dgk. (10)

With this marginalization, we can use the channel aware de-
sign approach [7] that tends to the ‘averaged’ transmission
channel. This motivates the NOCSIF design. If the fusion rule
does not depend on the instant CSI, i.e., P (U0 = 1−i|y,g) =
P (U0 = 1 − i,y), the average error probability in (4) can be
rewritten as

Pe0 =
1∑

i=0

πi

∫
y

∑
u

P (U0 = 1 − i|y)

(∫
g

p(y|u,g)p(g)dg
) ∫

x

P (u|x)p(x|Hi)dxdy

where
∫
g

p(y|u,g)p(g)dg precisely describes the marginal-

ized transmission channels (c.f. Eq. (10)). This directly leads
to the following case.

3.2. The NOCSIF Case

Here we consider the case where the fusion center does not
know the instant CSI. As such, the marginalization described
in (10) will be implemented. This leads to the standard chan-
nel aware design where the transmission channels are charac-
terized by the marginalized distribution p(Yk|Uk). From [7],
we have a result resembling that of Theorem 1 except that
Ak, Bk and C are replaced by A′

k, B′
k and C ′:

A′
k =

∫
y

P (U0 = 1|y)

[∑
uk

(
p(y|uk1) − p(y|uk0)

)
P (uk|H0)

]
dy, (11)

B′
k =

∫
y

P (U0 = 0|y)

[∑
uk

(
p(y|uk0) − p(y|uk1)

)
P (uk|H1)

]
dy. (12)

C ′ =
∫

Xk

[
1∑

i=0

πip(Xk|Hi)
∫
y

P (U0 = 1 − i|y)

∑
uk

p(y|uk0)p(uk|Hi)dy

]
dXk.

Contrary to the CSIF case, A′
k, B′

k for the NOCSIF case are
much easier to evaluate.

4. PERFORMANCE EVALUATION

In this section, we use a two-sensor example to evaluate the
performance of both the CSIF and NOCSIF cases and com-
pare them with the clairvoyant case where the global channel
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information is assumed known to the designer. For conve-
nience, we call the clairvoyant case as the CSI case. Con-
sider the detection of a known signal S in zero-mean com-
plex Gaussian noises that are independent and identically dis-
tributed (i.i.d.) for the two sensors, i.e., for k = 1, 2

H0 : Xk = Nk,

H1 : Xk = S + Nk

with N1 and N2 being i.i.d. CN (0, σ2
1). Without loss of gen-

erality, we assume S = 1 and σ2
1 = 2.

Each sensor makes a binary decision based on its obser-
vation Xk,

Uk = γk(Xk),

and then transmits it through a Rayleigh fading channel to the
fusion center. The channel output is

Yk = gkXk + Wk

where g1, g2 are i.i.d. zero-mean complex Gaussian distributed
CN (0, σ2

g) and W1,W2 are i.i.d. zero-mean complex Gaus-

sian noises with distribution CN (0, σ2
2). Without loss of gen-

erality, we assume σ2
g = 1.

In Fig. 2, for the equal prior probability case, the average
error probabilities as a function of the average signal-to-noise
ratio (SNR) of the received signal at the fusion center are plot-
ted for the CSIF and NOCSIF cases, along with the CSI case.
We also plot a curve, legended with ‘CSIF1’ in Fig. 2, where
the local sensors use thresholds obtained via the NOCSIF ap-
proach but the fusion center implements a fusion rule that uti-
lizes the CSI g. The motivation is two-fold. First, estimating
g at the fusion center is typically feasible. Second and more
importantly, the threshold design for NOCSIF is much sim-
pler compared with CSIF, as explained in Section 3.1.

As expected, the CSI case has the best performance and
NOCSIF case has the worst performance since the designer
has the most information in the clairvoyant case and has the
least information in NOCSIF case. The CSIF case is only
slightly worse than the CSI case but is much better than the
NOCSIF case. The difference of CSIF1 and CSIF is almost
indistinguishable. The explanation is that the performance is
much more sensitive to the fusion rule than to the local sensor
thresholds. This phenomenon has been observed before: the
error probability versus threshold plot is rather flat near the
optimum point, hence is robust to small changes in thresholds.

5. CONCLUSIONS

We investigated the distributed detection problem with chan-
nel fading statistics. Restricted binary local sensor decisions,
we derive the necessary conditions for optimal local sensor
decision rules that minimize the average error probability at
the fusion center for both the CSIF and NOCSIF cases. We
also establish the optimality of the LRT for local sensor de-
cisions rules for both cases. Numerical results indicate that
a mixed approach where the sensors use the decision rules

from the NOCSIF approach while the fusion center imple-
ments a fusion rule using the CSI achieves almost identical
performance to that of the CSIF case.
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Fig. 2. Average error probability versus channel SNR.
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