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ABSTRACT

In this paper we present a new robust sound source localization

and tracking method using an array of eight microphones (US

patent pending) . The method uses a steered beamformer based
on the reliability-weighted phase transform (RWPHAT) along with

a particle filter-based tracking algorithm. The proposed system is

able to estimate both the direction and the distance of the sources.

In a videoconferencing context, the direction was estimated with
an accuracy better than one degree while the distance was accurate

within 10% RMS. Tracking of up to three simultaneous moving

speakers is demonstrated in a noisy environment.

1. INTRODUCTION

Sound source localization is defined as the determination of the

coordinates of sound sources in relation to a point in space. This can

be very useful in videoconference application, either for directing the
camera toward the person speaking, or as an input to a sound source

separation algorithm [1] to improve sound quality. Sound source

tracking has been demonstrated before by using Kalman filtering [2]

and particle filtering [3]. However, this has only been experimentally
demonstrated with a single sound source at a time. Our work

demonstrates that it is possible to track multiple sound sources

using particle filters by solving the source-observation assignment

problem.

The proposed sound localization and tracking system is com-
posed of two parts: a microphone array, a memoryless localization

algorithm based on a steered beamformer, and a particle filtering

tracker. The steered beamformer is implemented in the frequency

domain and scans the space for energy peaks. The robustness of
the steered beamformer is enhanced by the use of the reliability

weighted phase transform (RWPHAT). The result of the first local-

ization is then processed by a particle filter that tracks each source

while also preventing false detections.

This approach improves on an earlier work in mobile robotics

[4] and can estimate not only the direction, but the distance of

sound sources. Localization accuracy and tracking capabilities of

the system are reported in a videoconferencing context. In that

application, the ability to estimate the source distance is significant
as it solves the parallax problem for the case when the camera is not

located at the center of the microphone array. We use a circular array
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because it is the most convenient shape for our videoconferencing

application.

The paper is organized as follows. Section 2 describes our
steered beamformer based on the RWPHAT. Section 3 explains

how tracking is performed using a particle filter. This is followed

by experimental results and a discussion in Section 4. Section 5

concludes the paper and presents future work.

2. BEAMFORMER-BASED SOUND LOCALIZATION

The basic idea behind the steered beamformer approach to source
localization is to steer a beamformer in all possible locations and

look for maximal output. This can be done by maximizing the output

energy of a simple delay-and-sum beamformer.

2.1. Reliability-Weighted Phase Transform

It was shown in [4] that the output energy of an M -microphone

delay-and-sum beamformer can be computed as a sum of micro-

phone pair cross-correlations Rxm1
,xm2

(τm1
− τm2

), plus a con-

stant microphone energy term K:

E = K + 2

M−1�

m1=0

m1−1�

m2=0

Rxm1
,xm2

(τm1
− τm2

) (1)

where xm (n) is the signal from the mth microphone and τm is
the delay of arrival (in samples) for that microphone. Assuming

that only one sound source is present, we can see that E will be

maximal when the delays τm are such that the microphone signals

are in phase, and therefore add constructively.

The cross-correlation function can be approximated in the
frequency domain. A popular variation on the cross-correlation

is the phase transform (PHAT). Some of its advantages include

sharper cross-correlation peaks and a certain level of robustness to

reverberation. However, its main drawback is that all frequency
bins of the spectrum have the contribution to the final correlation,

even if the signal at some frequencies is dominated by noise or

reverberation. As an improvement over the PHAT, we introduce the

reliability-weighted phase transform (RWPHAT) defined as:

RRWPHAT
i,j (τ ) =

L−1�

k=0

ζi(k)Xi(k)ζj(k)Xj(k)∗

|Xi(k)| |Xj(k)| ej2πkτ/L
(2)

where the weights ζn
i (k) reflect the reliability of each frequency

component. It is defined as the Wiener filter gain:

ζn
i (k) =

ξn
i (k)

ξn
i (k) + 1

(3)
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where ξn
i (k) is an estimate of the a priori SNR at the ith

microphone, at time frame n, for frequency k, computed using the

decision-directed approach proposed by Ephraim and Malah [5].
The noise term considered for the a priori SNR estimation is

composed of a background noise term σ2
i (k) and a reverberation

term λn
i (k). Background noise is estimated using the Minima-

Controlled Recursive Average (MCRA) technique [6], which adapts
the noise estimate during periods of low energy. We use a simple

exponential decay model for the reverberation:

λn
i (k) = γλn−1

i (k) + (1 − γ)δ−1 �� ζn
i (k)Xn−1

i (k) �� 2 (4)

where γ is the reverberation decay (derived from the reverberation
time) of the room, δ is the signal-to-reverberant ratio (SRR) and

R−1
i (k) = 0. Equation 4 can be seen as modeling the precedence

effect [7], ignoring frequency bins where a loud sound was recently

present.

2.2. Search Procedure

Unlike previous work using spherical mesh composed of triangular
[4], we now use a square grid folded onto a hemisphere. The square

grid makes it easier to do refining steps and only a hemisphere

is needed because of the ambiguity introduced by having all

microphones in the same plane. For grid parameters u and v in the
[−1, 1] range, the unit vector u defining the direction is expressed

as:

u = � v√
u2 + v2

sin φ,
u√

u2 + v2
sin φ, cos φ � T

(5)

where φ = π max � u2, v2 � /2. The complete search grid is defined

as the space covered by du, where d is the distance to the center of

the array.

The search for the location maximizing beamformer energy is
performed using a coarse/fine strategy. Unlike work presented by

[8], even the coarse search can proceed with a high resolution,

with a 41x41 grid (4-degree interval) for direction and 5 possible

distances. The fine search is then used to obtain an even more

accurate estimation, with a 201x201 grid (0.9-degree interval) for
direction and 25 possible distances ranging from 30 cm to 3 meters.

The cross-correlations RRWPHAT
i,j (τ ) are computed by averag-

ing the cross-power spectra Xi(k)Xj(k)∗ over a time period of 4

frames (40 ms) for overlapping windows of 1024 samples at 48 kHz.
Once the cross-correlations RRWPHAT

i,j (τ ) are computed, the search

for the best location on the grid is performed using a lookup-and-sum

algorithm where the time delay of arrival τ for each microphone pair

and for each source location is obtained from a lookup table. For an
array of 28 microphones, this means only 28 lookup-and-sum oper-

ations for each position searched, much less than would be required

by a time-domain implementation. In the proposed configuration

(N = 8405, M = 8), the lookup table for the coarse grid fits en-
tirely in a modern processor’s L2 cache, so that the algorithm is not

limited by memory access time.

After finding the loudest source by maximizing the energy of

a steered beamformer, other sources can be localized by removing
the contribution of the first source from the cross-correlations and

repeating the process. In order to remove the contribution of a

source, all values of RRWPHAT
i,j (τ ) that have been used in the sum

that produced the maximal energy are reset to zero. The process is
summarized in Algorithm 1. Since the beamformer does not know

how many sources are present, it always looks for two sources. This

situation leads to a high rate of false detection, even when two or

more sources are present. That problem is handled by the particle
filter described in the next section.

Algorithm 1 Steered beamformer location search

for q = 1 to assumed number of sources do
for all grid index k do

Ek ← � i,j RRWPHAT
i,j (lookup(k, i, j))

end for
Dq ← argmaxk (Ek)
for all microphone pair i, j do

RRWPHAT
i,j (lookup(Dq , i, j)) ← 0

end for
end for

3. PARTICLE-BASED TRACKING

To remove false detection produced by the steered beamformer and

track each sound source, we use a probabilistic temporal integration
based on all measurements available up to the current time. It has

been shown in [3, 9] that particle filters are an effective way of

tracking sound sources. Using this approach, the pdf representing

the location of each source is represented as a set of particles to
which different weights (probabilities) are assigned. The choice

of particle filtering over Kalman filtering is further justified by the

non-gaussian probabilities arising from false detections and multiple

sources.
At time t, we consider the case of Ns sources (j index) being

tracked, each modeled using Np particles (i index) of location x
(t)
j,i

and weights w
(t)
j,i . The state vector for the particles is composed of

six dimensions, three for position and three for its derivative:

s
(t)
j,i = � x

(t)
j,i ẋ

(t)
j,i � T

(6)

We implement the sampling importance resampling (SIR) algorithm.

The steps are described in the following subsections and generalize
sound source tracking to an arbitrary and non-constant number of

sources.

Prediction
As a predictor, we use the excitation-damping model as proposed in

[3]:

ẋ
(t)
j,i = aẋ

(t−1)
j,i + bFx (7)

x
(t)
j,i = x

(t−1)
j,i + ∆T ẋ

(t)
j,i (8)

where a = e−α∆T controls the damping term, b = β
√

1 − a2

controls the excitation term, Fx is a Gaussian random variable of

unit variance and ∆T is the time interval between updates.

Instantaneous Location Probabilities
The steered beamformer described in Section 2 produces an obser-

vation O(t) for each time t that is composed of Q potential source
locations yq. We also denote O(t), the set of all observations up

to time t. We introduce the probability Pq that the potential source

q is a true source (not a false detection) that can be interpreted as

our confidence in the steered beamformer output. We know that the
higher the beamformer energy, the more likely a potential source is

to be true, so

Pq = � ν2/2 ν ≤ 1
1 − ν−2/2, ν > 1

, ν = E/ET (9)
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False
detection

Potential
source q

Tracked
source j

Not observed

Not observed

Fig. 1. Assignment example where one of the tracked sources

is observed and one potential source is a false detection. The

assignment can be described as f({0, 1}) = {1,−2}.

where ET is the empirical threshold energy for 50% probability.

Assuming that yq is not a false detection, the probability density of

observing O
(t)
q for a source located at particle position x

(t)
j,i is given

by a normal distribution centered at xj,i with a standard deviation of
3 degrees for direction and a distance-dependent standard deviation

for the distance.

Probabilities for Multiple Sources

Before we can derive the update rule for the particle weights w
(t)
j,i , we

must first introduce the concept of source-observation assignment.

For each potential source q detected by the steered beamformer, we

must compute Pq,j , the probability that the detection is caused by the

tracked source j, Pq(H0), the probability that the detection is a false
alarm, and Pq(H2), the probability that observation q corresponds

to a new source.

Let f : {0, 1, . . . , Q− 1} −→ {−2,−1, 0, 1, . . . , M − 1} be a

function assigning observations q to the tracked sources j (values

-2 is used for false detection and -1 is used for a new source).

Figure 1 illustrates a hypothetical case with the two potential sources
detected by the steered beamformer and their assignment to the three

tracked sources. Knowing P � f
��� O(t) � (the probability that f is the

correct assignment given observation O(t)) for all possible f , we
can compute Pq,j as the sum of the probabilities of all f that assign

potential source q to tracked source j. The probabilities for new

sources and false detections are obtained similarly.

Omitting t for clarity, and assuming conditional independence of

the observations given the mapping function, the probability P (f |O)
is given by:

P (f |O) =
P (f) � q p (Oq | f(q))

p(O)
=

P (f) � q p (Oq| f(q))� f P (f) � q p (Oq | f(q))
(10)

We assume that the distribution of the false detections (H0) and the
new sources (H2) are uniform, while the distribution for tracked

sources (H1) is the pdf approximated by the particle distribution

convolved with the steered beamformer error pdf:

p (Oq | f(q)) =
�

i

wf(q),ip (Oq |xj,i) (11)

The a priori probability of f being the correct assignment is
also assumed to come from independent individual components:

P (f) = � q P (f(q))with:

P (f(q)) = ���
�	

(1 − Pq) Pfalse, f(q) = −2
PqPnew f(q) = −1

PqP � Obs
(t)
j

��� O(t−1) � f(q) ≥ 0
(12)

where Pnew is the a priori probability that a new source appears

and Pfalse is the a priori probability of false detection and

P � Obs
(t)
j

��� O(t−1) � = P � Ej

��� O(t−1) � P � A
(t)
j

��� O(t−1) � is the

probability that source j is observable, i.e., that it exists (Ej) and

it is active (A
(t)
j ) at time t.

The probability that the source exists is computed using Bayes

law over multiple time frames and considering the instantaneous

probability of the source being observed P
(t−1)
j , as well as the

a priori probability that the source exists despite not being observed.

The probability that a source is active (non-zero signal) is computed
by considering a first order Markov process with two states (active,

inactive). The probability that an active source remains active is set

to 0.95, and the probability that an inactive source becomes active

again is set to 0.05. We assuming that the active and inactive states
are a priori equiprobable.

Weight Update
At times t, assuming that the observations are conditionally indepen-

dent given the source position, and knowing that for a given source

j, � N
i=1 w

(t)
j,i = 1, the new particle weights for source j are defined

as:

w
(t)
j,i = p � x(t)

j,i

��� O(t) � =
p � x(t)

j,i

��� O(t) � w
(t−1)
j,i� N

i=1 p � x(t)
j,i |O(t) � w

(t−1)
j,i

(13)

The probability p � x(t)
j,i

��� O(t) � is given by:

p � x(t)
j,i

��� O(t) � =
� 1 − P

(t)
j

�
N

+ Pj

� q P
(t)
q,j p � O

(t)
q

��� x(t)
j,i

�
� i � q P

(t)
q,j p � O

(t)
q

��� x(t)
j,i

�
(14)

Adding or Removing Sources
In a real environment, sources may appear or disappear at any

moment. If, at any time, Pq(H2) is higher than a threshold equal
to 0.3, we consider that a new source is present, in which case a set

of particles is created for source q. Similarly, we set a time limit

on sources so that if the source has not been observed for a certain

amount of time, we consider that it no longer exists. In that case, the
corresponding particle filter is no longer updated nor considered in

future calculations.

Parameter Estimation
The estimated position of each source is the mean of the pdf and
can be obtained as a weighted average of its particles position:

x̄
(t)
j = � N

i=1 w
(t)
j,i x

(t)
j,i

Resampling

Resampling is performed only when Neff ≈ � � N
i=1 w2

j,i
� −1

<

Nmin [10]. That criterion ensures that resampling only occurs

when new data is available for a certain source. Otherwise, this

would cause unnecessary reduction in particle diversity, due to some
particles randomly disappearing.
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Fig. 2. Tracking results in the horizontal plane (time and elevation now shown). Left: one moving speaker (going from left to right), center:
two moving speakers (speaker 1 going from right to left, speaker 2 going from left to right), right: three moving speakers going back and

forth on each side.

4. RESULTS AND DISCUSSION

The proposed localization system was tested using real recordings

with a 60 cm circular array of eight omni-directional microphones

resting on top of a table. The shape of the array is chosen for its
symmetry and convenience in a videoconferencing setup, although

the proposed algorithm would allow other positions. The testing

environment is a noisy conference room resulting in an average SNR

of 7 dB (assuming one speaker) and with moderate reverberation.
Running the localization system in real-time required 30% of a

2.13 GHz Pentium-M CPU. For a stationary source at 1.5 meter

distance, the angular accuracy was found to be better than one degree

(below our measurement accuracy) while the distance estimate was
found to have an RMS error of 10%. It is clear from these results

that angular accuracy is much better than distance accuracy. This is

a fundamental aspect that can be explained by the fact that distance

only has a very small impact on the time delays perceived between
the microphones.

Three tracking experiments were conducted. The results in

Figure 2 show that the system is able to simultaneously track one,
two or three moving sound sources. For the case of two moving

sources, the particle filter is able to keep track of both sources even

when they are crossing in front of the array. Because we lack

the “ground truth” position for moving sources, only the distance
error was computed1 (using the information about the height of the

speakers) and found to be around 10% for all three experiments.

5. CONCLUSION

We have implemented a system that is able to localize and track

simultaneous moving sound sources in the presence of noise and
reverberation. The system uses an array of eight microphones and

combines an RWPHAT-based steered beamformer with a particle

filter tracking algorithm capable of following multiple sources.

An angular accuracy better than one degree was achieved with

a distance measurement error of 10%, even for multiple moving

speakers. To our knowledge, no other work has demonstrated
tracking of direction and distance for multiple moving sound

sources. The capability to track distance is important as it will allow

a camera to follow a speaker even if it is not located at the center of

the microphone array (parallax problem).

1Computation uses knowledge of the height of the speakers and assumes
that the angular error is very small.
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