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ABSTRACT

This paper presents a new approach for multiple speaker DOA esti-
mation using an array of microphones. The method relies on the fact
that multiple independent speakers have a small overlap in the time-
frequency domain, i.e. the individual signals are almost W-disjoint
orthogonal. By introducing a time-frequency mask and by continu-
ously track the set of time-frequency points corresponding to each
individual speech signal, a single source DOA estimation algorithm
is used to find the DOA for each separated signal. This approach
does not limit the solution to cases where the number of sensors
exceeds the number of sources. Real room recordings are used to
evaluate the performance of the method where source movements
are also included.

1. INTRODUCTION

This paper presents and evaluates a new method consisting of a com-
bination of existing techniques used to determine the angle of arrival
of multiple concurrent speech sources with respect to a microphone
array. The method involves three steps:

1. using a blind signal separation algorithm to separate the dif-
ferent speech sources into sets of mixtures, each containing a
single source,

2. using conventional single source methods for estimating time
difference for each set of mixtures, and

3. filter angle estimates using a one-step prediction Kalman fil-
ter.

By preprocessing the mixtures with a blind signal separation algo-
rithm, the problem of delay estimation is reduced from finding mul-
tiple delays in one set of mixtures, to finding single delays in several
sets of signals.

The goal of blind signal separation is to separate a set of un-
known signals, or sources, from a set of known mixtures. The mix-
tures are typically the output from a sensor array, where the different
sensors receives different mixtures of the source signals. The term
“blind” in this context means [1]

1. the source signals are not observed, and

2. no information is available about the mixing system.

To compensate the lack of information about the sources, their prop-
agation to the sensor array and the mixing system, some assumptions
must be made about the sources being separated. Such assumptions
can be that sources must be statistically independent, or, as in this
paper, that sources must be W-disjoint orthogonal.

One recently developed algorithm for blind signal separation is
DUET, Degenerate Unmixing and Estimation Technique [2]. This

algorithm can separate more sources than mixtures, refered to as de-
generate demixing. Degenerate demixing is challenging in that the
mixing matrix is not invertible, and traditional algorithms based on
estimating the inverse of the mixing matrix does not work.

To estimate time delay a generalization of the Generalized cross
correlation method [3] is used. The generalization extends the method
to include more than two sensor signals. The Generalized cross cor-
relation is a correlation based method, which involves maximizing
the cross correlation of all sensor signals. Given two signals, where
one is a time shifted version of the other, maximum cross correlation
occurs at the point which corresponds to the time shift.

The delay estimates, or the corresponding angle of arrival esti-
mates, are filtered to reduce variance. As this paper focus on speech
sources, it is assumed that the source locations are constant within a
small enough time frame to allow the filter to reduce noise variance,
but still keep up with changes due to actual movement of the source.

2. BLIND SIGNAL SEPARATION

The recently developed algorithm for blind signal separation, DUET
[2], is used in this paper. A modification making it suitable for online
real-time applications is presented in [4]. The algorithm relies on the
assumption that the sources are W-disjoint orthogonal.

2.1. W-disjoint orthogonality

Two signals x1(t) and x2(t) are W-disjoint orthogonal, if, for a given
window function, the support of the windowed Fourier transform of
x1(t) and x2(t) are disjoint sets. The windowed Fourier transform of
xn(t) is defined as

FW [xn(·)] (ω,τ) =
∫ ∞

−∞
W (t − τ)xn(t)e− jωt dt, (1)

denoted in this paper as Sn(ω,τ). The W-disjoint orhogonality can
then be stated as

S1(ω,τ)S2(ω,τ) = 0, ∀ω,τ. (2)

In practice, however, equation (2) is rarely satisfied exactly. Instead,
the term approximately W-disjoint orthogonal is introduced, which
represents the level of orthogonality of sources. In [4], it is shown
that independent speech signals can be considered to be almost W-
disjoint orthogonal.

2.2. Mixing parameter estimation

The original algorithm assumes a signal model where the relative
difference between a source signal received by two sensors is only a
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scale factor and a time delay, expressed as

x1(t) =
N

∑
n=1

sn(t)

x2(t) =
N

∑
n=1

ansn(t −δn)

(3)

where N is the number of sources, an and δn is the relative attenua-
tion and time delay, respectively, between the two sensors for source
n at the sensor pair. In matrix form, this can be expressed as

[
X1(ω,τ)
X2(ω,τ)

]
=

[
1 · · · 1

a1e− jωδ1 · · · aNe− jωδN

]⎡
⎢⎣

S1(ω,τ)
...

SN(ω,τ)

⎤
⎥⎦ . (4)

Under the assumption that the sources are W-disjoint orthogonal,
that is, that at most one source is active at any time-frequency point
(ω,τ), the equation can be rewritten as[

X1(ω,τ)
X2(ω,τ)

]
=

[
1

ane− jωδn

][
Sn(ω,τ)

]
, n ∈ [1 . . .N] (5)

where n indicates the single active source at the corresponding time-
frequency point (ω,τ).

In [4], a maximum likeliehood cost function is derived. This
cost function is minimized with a gradient based search method in
order to find the mixing parameters. Mixing parameters are updated
as

an(k) = an(k−1)−µ
∂J(τ)
∂an

δn(k) = δn(k−1)−µ
∂J(τ)
∂δn

(6)

where µ is the learning rate, J(·) is the cost function and k is a time
index.

Some modifications for small arrays are made to the original al-
gorithm in order to improve the performance. Assuming that the rel-
ative attenuation mixing parameter is unity, there is no need to track
the attenuation mixing parameter, and the expression for the partial
derivative for updating the delay mixing parameter is simplified. In
this case, the attenuation mixing parameter is ignored, and the delay
mixing parameter is updated as in (6), where

∂J(τ)
∂δn

= ∑
ω

−ωe−λρn

∑N
m=1 e−λρm

ℑ
[
X1(ω,τ)X∗

2 (ω,τ)e− jωδn

]
(7)

and where ℑ[·] denotes the imaginary part of the complex argument,
ρn is short for ρ(δn,ω,τ) and

ρ(δn,ω,τ) =
1
2

∣∣∣X1(ω,τ)e− jωδn −X2(ω,τ)
∣∣∣2

. (8)

The original algorithm assumes two sensors, so a modification
is made to make use of an arbitrary number of sensors in a linear
array. Equation (6) is modified to

δn(k) = δn(k−1)−µ
M−1

∑
m=1

∂Jm,m+1(τ)
∂δn

(9)

where M is the number of sensors and ∂Jm,m+1(τ)/∂δn indicates the
use of Xm and Xm+1 instead of X1 and X2 in (7) and (8).

2.3. Demixing

The original algorithm performs the demixing using binary masks.
The mask is defined as

Ωn(ω,τ) =

{
1 ρn ≤ ρm, ∀m �= n

0 otherwise
(10)

and the original source estimates in time-frequency representation is

Ŝn,m(ω,τ) = Ωn(ω,τ)Xm(ω,τ) (11)

where subscript m represents any one of the received mixtures.
At this point, the original algorithms reconstructs the original

sources by transforming the time-frequency representation into time
domain signals. This paper, however, will leave the sources in their
time-frequency representation as the goal is not to reconstruct the
signals but to identify the inter-sensor delay for each source, and the
time-frequency representation is the needed representation for the
delay estimation algorithm.

Furthermore, the demixing stage masks only a single mixture to
create the time-frequency representation for the sources. It is neces-
sary to further modify the original algorithm to mask all mixtures,
as the delay estimation algorithm needs the separated sources from
each sensor, not just a single sensor.

3. DELAY ESTIMATION

3.1. The Generalized cross correlation

The method used to estimate inter-sensor delays is based on the Gen-
eralized cross correlation method, described in [3]. The delay for
source n ∈ [1 . . .N] is estimated by maximizing the cross correlation
between two signals Sm1(ω,τ) and Sm2(ω,τ), where Sm = Ŝn,m in
(11), and can be expressed as

∆̂ = argmax
∆

RSm1 Sm2
(∆) . (12)

The cross correlation RSm1 Sm2
(∆) is related to the cross power spec-

trum GSm1 Sm2
(ω,τ) by the Fourier transform as

RSm1 Sm2
(∆) =

1
2π

∞∫
−∞

GSm1 Sm2
(ω,τ)e jω∆dω . (13)

The cross power spectrum can be calculated as

GSm1 Sm2
(ω,τ) = Sm1 (ω,τ)S∗m2

(ω,τ) (14)

where (·)∗ denotes complex conjugate. The generalized cross corre-
lation is defined in [3] as

RSm1 Sm2
(∆) =

1
2π

∞∫
−∞

ψ (ω,τ)GSm1 Sm2
(ω,τ)e jω∆dω (15)

where ψ(ω,τ) is a general weighting function. The generalized cor-
relation method known as the phase transform, or PHAT, is obtained
by setting the weighting function to

ψPHAT (ω,τ) =
1∣∣∣GSm1 Sm2
(ω,τ)

∣∣∣ . (16)

This weighting function normalizes the absolute value of all coeffi-
cients in the cross power spectrum to unity, and uses only the phase
information to calculate the cross correlation. The PHAT weighting
function have been found to work well in the presence of reverbera-
tion [5].
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3.2. Multiple sensors

A generalization of the GCC-PHAT to handle multiple sensors is the
SRP-PHAT algorithm and it is here defined as

∆̂ = argmax
∆

M−1

∑
m1=1

M

∑
m2=m1

∞∫
−∞

GSm1 Sm2
(ω,τ)∣∣∣GSm1 Sm2
(ω,τ)

∣∣∣ e jω(m2−m1)∆dω . (17)

The original GCC-PHAT assumes two sensors, while SRP-PHAT
generalizes into several sensors, where a delay is found that maxi-
mizes the cross correlation for all possible combinations of sensor
pairs.

The SRP, or steered response power, principle is based on steer-
ing a beamformer across various locations searching for maximum
output power. The beamformer is a delay-and-sum beamformer,
which delays the output signals from the individual sensors and then
sums them together to form the output.

3.3. Angle of arrival

When a delay is estimated, a corresponding angle of arrival can be
calculated as

α̂ = arcsin

(
c · ∆̂

d

)
(18)

where c is the propagation speed of sound, τ̂ is the estimated time
delay and d is the sensor separation distance. An angle of 0◦ corre-
sponds to broadside, while -90◦ and +90◦ corresponds to the endfire
directions.

Time delay estimation with a linear array is most accurate when
the source is located near the broadside of the array, and the variance
of the estimated angle will increase as the source approaches the
endfire. The variance of the estimated angle is [6]

V [α̂] ∝
V [τ̂]

cos2 α
(19)

where V [·] denotes the variance operator and α is the true angle. If
the source positions are restricted, the sensor array should be placed
and oriented such that the source is located near the broadside as
much as possible to keep the variance as low as possible.

Another issue is that the linear array can not determine if the
source is in front of or behind the array. If only a two dimensional
case is considered, positions that are mirrored along the line con-
necting the sensors results in the same relative time delays, which
in turn will map to the same angle of arrival, even though the actual
positions are different. This is, however, a limitation in the array
geometry, and a different geometry can solve this problem. In this
paper it is assumed that the source is restricted to only one side of the
sensor array. In practice, this can be enforced by placing the array
along a wall for example, effectively limiting the possible positions
of the source.

4. FILTERING

In order to reduce the variance of the estimated angles, a filter is
applied to the estimated values. The filter is a Kalman filter based on
one-step prediction, as described in [7]. The Kalman filter is a state
based filter, where the state vector contains all necessary information
needed to predict future states assuming no external forces are acting
on the system.

The state vector used in this paper only contains information
about the current angle, but could also include information like rate

1: for n = 1, 2, 3 . . . do
2: Gn = F ·Kn ·CH · [C ·Kn ·CH +Q2

]−1

3: an = yn −C · x̂n
4: x̂n+1 = F · x̂n +Gn ·an
5: Kn+1 = F · [Kn −F−1 ·Gn ·Kn

] ·FH +Q1
6: end for

Table 1. Kalman filter based on one-step prediction.

of changes in the angle. Since the angle is a one dimensional quan-
tity, the state vector at time index n is simply x̂n = [α]. The transition
matrix F used to predict the state vector x̂n+1 from x̂n is F = I1, and
the measurement matrix C used to extract the desired information
from the state vector is C = I1, where In denotes the n× n identity
matrix. The correlation matrices for the process and measurement
noise is Q1 = q1I1 and Q2 = q2I1, respectively, where q1 and q2 are
the variances of the process and measurement noise.

The algorithm for estimating the state vector at iteration n, x̂n+1,
given estimated angles from the SRP-PHAT algorithm, yn, is shown
in table 1.

An important feature of the state based model is that the state
can be tracked for short periods even though the source is not active,
since the state vector contains information to predict future states. In
the context of speech localization, this can, for example, mean that
the state vector is updated even during short pauses in the speech.

5. EVALUATION

The algorithms to estimate angle of arrivals for multiple concur-
rent speech sources is evaluated in a real room environment. The
room represents a typical office room (hard walls, some furnitures
etc.) of size 4×5×2,5 meters. Speech sources are represented by
loudspeakers, playing pre-recorded speech of random phrases. Fig-
ure 1 shows the four-microphone array and speaker setup. A speaker,
representing the first source, is moved between the angles 0◦, 20◦,
40◦and 60◦. A second speaker, representing the second source, is
placed at -30◦ throughout the test.

The tests focuses on measuring the variance and mean estima-
tion error of the estimated angles after filtering as the first source
moves between the four angles. The variance measures the devia-
tion from the mean angle and indicates the amount of noise in the
estimated angles, while mean estimation error is the addition of a
static offset in the estimated angles compared to the real angle.

A Hanning window of 512 samples, with a 50% overlap, is used,
and the sample rate is 16 kHz.

Top half of figure 2 shows the standard deviation. Two important
properties are shown; as the angle for source 1 approaches the endfire
of the array, the standard deviation increases, as implied in (19), and
as the two sources are close to each other, the standard deviation
also increases. When the sources are separated enough, the standard
deviation of the second source remains constant.

Bottom half of figure 2 shows the mean estimation error. Again,
when the two sources are separated enough, the mean estimation er-
ror for the second source remains constant. When the sources gets
too close, they start to affect each other, implying there is a limit on
how close two sources can be to be uniquely separated. The mean es-
timation error for the first source increases as the source approaches
the endfire.

A second test is performed to evaluate how attenuated sources
affect the variance of the angle estimates. The first source is placed
at 40◦, and the second at -30◦, and the first source is attenuated.
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Figure 3 shows the level of time-frequency orthogonality, i.e. non-
overlapping area in time-frequency domain, calculated as in [4], for
the two sources as the first source is attenuated. The figure also
shows the standard deviation of the corresponding angle estimates as
the first source is attenuated. When the first source is attenuated, the
level of orthogonality decreases, but the standard deviation remains
constant, which indicates robustness with respect to level differences
of the sources.

6. CONCLUSIONS AND FUTURE WORK

Real room recordings have shown that the combination of algorithms
in this paper forms a robust method for angle of arrival estimation for
multiple concurrent speech sources. Good results were obtained in
environments with moderate reverberation.

All steps involved in estimating the angles are suitable for real
time applications, which is important as the system is intended for
use with real time speech localization. The algorithms are also nu-
merically simple enough to be performed in real time by a standard
desktop computer.

In the problem of locating speech sources, this paper describes a
method for estimating the angle of arrival from a single sensor array.
The problem of finding the actual position still remains. By using
multiple sensor arrays, a linear intersection algorithm as described in
[8] can be used to determine intersection points for angle of arrivals
from several sensor arrays, which have been found to work well for
single source cases. In the case of multiple sources, it is necessary
to match angle of arrivals from different sensor arrays such that the
intersection points will correspond to actual sources. It is therefore
necessary to investigate solutions to the problem of matching sepa-
rated sources between sensor arrays.
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Fig. 1. Setup used to evaluate the performance of the algorithms. A
loudspeaker is moved between the angles 0◦, 20◦, 40◦and 60◦, and
a second loudspeaker is placed at -30◦.
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Fig. 2. Standard deviation (STD) and mean estimation error (MEE)
for source 1 and source 2 as source 1 is moved to different angles.
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Fig. 3. Percentage of non-overlapping time-frequency points (solid
line) and standard deviation (dashed line) with respect to level dif-
ferences of two sources.
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